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The importance of the Fourier transform as a fundamental tool for crystallo-

graphy is well known in the field. However, the complete legacy of Jean-Baptiste

Joseph Fourier (1768–1830) as a pioneer Egyptologist and premier mathema-

tician and physicist of his time, and the implications of his work in other scientific

fields, is less well known. Significantly, his theoretical and experimental work on

phenomena related to the transmission of heat founded the mathematical study

of irreversible phenomena and introduced the flow of time in physico-chemical

processes and geology, with its implications for biological evolution. Fourier’s

insights are discussed in contrast to the prevalent notion of reversible dynamic

time in the early 20th century, which was dominated by Albert Einstein’s (1875–

1953) theory of general relativity versus the philosophical notion of durée

proposed by the French philosopher Henri-Louis Bergson (1859–1941). The

current status of the mathematical description of irreversible processes by Ilya

Romanovich Prigogine (1917–2003) is briefly discussed as part of the enduring

legacy of the pioneering work of J.-B. J. Fourier, first established nearly two

centuries ago, in numerous scientific endeavors.

1. Introduction

Nearly two centuries ago, in 1822, Jean-Baptiste Joseph

Fourier published his milestone Théorie analytique de la

chaleur, published much later translated into English as The

Analytical Theory of Heat (Fourier, 1878). In an earlier essay,

submitted to the Royale Académie des Sciences as an entry

for the 1811 prize competition on the subject of the propa-

gation of heat in solid bodies (published by the Royal

Academy in 1826; Fourier, 1826), Fourier presented the notion

that it is possible to express any ‘irregular’ function (including

discontinuous functions) as a sum of ‘waves’ represented by a

sum of sine and cosine functions. The application of this

mathematical concept to the periodic distribution of X-ray

scatterers in a crystalline array hypothesized by W. H. Bragg

(1862–1942) (Bragg, 1915) developed into the foundations of

crystallography as we know it today. The application of

‘Fourier methods’ to solve crystal structures has been covered

by Isaacs (2016) in the context of the history of experimental

phasing methods in macromolecular crystallography. A more

detailed discussion will be presented here, emphasizing the

development of the concepts and relevant crystal structures, as

well as the often-overlooked importance of the improvements

in effective, fast and storage-efficient computational algo-

rithms for calculation of the discrete Fourier transform (DFT).

Aside from the implications and importance of Fourier’s

work in crystallography and mathematics (i.e. boundary

problems and rigorous definition of functions, among others)

and physics, the equation that Fourier unveiled to the world in
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1822 described mathematically the heat flow on a solid object,

thus initiating the study of irreversible phenomena in nature.

From this early memoir about the propagation of heat in

solids, submitted to the Institute de France (Fourier, 1807),

and through years of intense effort while in Grenoble, Fourier

expanded his insights into heat transmission and loss to

describe mathematically (i) the communication of heat

between discrete bodies, (ii) terrestrial heat and temperature

distributions on earth and (iii) radiant heat and the movement

of heat in fluids. Although mainly recognized for his theor-

etical work, Fourier also conducted experiments measuring

transient and steady-state temperature distributions to devise

the parameters of thermal conductivity in a heated annulus

and the cooling rate in a sphere (Fourier, 1826; discussed in

detail in Narasimhan, 2010).

The equation of heat flow inspired other physicists to

describe other physical phenomena even in Fourier’s lifetime.

Georg Simon Ohm (1789–1854) acknowledged the inspiration

of Fourier’s equation to formulate the well known equation

for the flow of electricity (Ohm, 1827), and further applica-

tions in the mathematical analysis of electricity and magnetism

followed (Green, 1828). Later, William Thompson (Lord

Kelvin; 1824–1907) published work directly relating the

motion of heat in solids to the mathematical theory of elec-

tricity and its applications (Thompson, 1842).

Surprisingly, Fourier’s work related to terrestrial heat would

have an unexpected application in geology, with unforeseen

consequences for biology. During his stay in France, early

knowledge of Fourier’s equations for the transmission of heat

and his interest in geology led Lord Kelvin to early estimates

of the age of the Earth. In two separate communications to the

leading geological societies of the time (Thompson, 1864,

1871), he estimated the age of the Earth to be between 20 and

400 (probably 100) million years, originating the notion of

geological time in the evolution of the Earth’s crust and the

ensuing biological evolution. These limits for the age of the

Earth were considered as a serious objection to Darwin’s

evolution by natural selection, which admittedly required longer

time periods (Darwin, 1872). Later, more adequate dating

methods based on radioactive decay eventually yielded a more

extended age for the Earth (�4.5 billion years), which was

more in agreement with the expectations of Lord Kelvin that

anticipated all sciences to be consistent with the tenets of the

more advanced physical sciences. See Halls & Wilkie (2015)

for a more detailed discussion of the controversy and the

influence of Lord Kelvin in estimating the age of the Earth.

The cycle of continuing years brings the notion of time more

into the human scale of events. Yet, scientific luminaries such

as Albert Einstein have often expressed the notion that time,

and more precisely the distinction between past and present,

was an ‘illusion’ (Isaacson, 2007). Scientists and philosophers

have debated these two conflicting views of human experience

innumerable times. A comprehensive but accessible review of

the ideas related to this clash was published a few years ago by

the science historian Professor J. Canales (Canales, 2015),

focusing on the historical debate between Einstein and the

most prominent French philosopher of the time, Henri-Louis

Bergson, in Paris on 6 April 1922 at the French Philosophical

Society. Surprisingly, this significant event for the history of

Western thought was not discussed or even mentioned in a

comprehensive and highly praised biography of Einstein

(Isaacson, 2007). The physicist was at the peak of his fame

after the confirmation of the general theory of relativity, while

Bergson published two very influential philosophical oeuvres

in which the notion of time had a primordial importance:

L’Évolution Crèatrice (1906) and Durée et Simultanéité later in

1922. Bergson, a professor of the prestigious École Normale

de France, presided over French philosophy for many years

and went on to receive the Nobel Prize in Literature in 1927

for the former book.

The influence of the Bergson–Einstein debate in the years

that followed was such that philosophical schools of thought

could essentially be distinguished by whether they aligned

with one or the other in their respective conceptions of time.

For instance, Alfred North Whitehead (1861–1947), a premier

British mathematician and philosopher who later moved to

Harvard, was the mentor and thesis advisor of no other than

Bertrand Arthur William Russell (1872–1970), and together

they co-authored the three-volume Principia Mathematica

(1910), a milestone in Western philosophy and mathematical

logic. Yet, they departed in their respective philosophies:

Whitehead was a strong advocate of Bergson’s concepts, while

Russell, who had acrimonious debates and correspondence

with Bergson, was unable to accept his views.

In addition to myriad applications of Fourier’s insights, the

ensuing advances in the study of nonequilibrium phenomena

in physics, chemistry and biology, particularly during the 20th

century, should make us re-evaluate the significance of Four-

ier’s early contributions to the study of heat transmission

nearly two centuries ago. Furthermore, the implications of his

work, and the revised conceptions of ‘time’ that ensue, are well

beyond the conflicting views of the Bergson–Einstein debate.

May this be our homage to the legacy of J.-B. J. Fourier, which

extends well beyond his critical role in our field of study and

the myriad other scientific endeavors in which the Fourier

transform is used in its different formulations.

2. Biographical background

J.-B. Joseph Fourier was born in the French town of Auxerre

on 21 March 1768. The town is located one hundred miles

southeast of Paris, and by 1751 was a prosperous town with a

large ecclesiastical community centered around the Abbey of

Saint-Germain on the banks of the river Yonne, a tributary of

the Seine. All of these factors were probably significant when

Fourier’s father, a master tailor, settled the family in Auxerre.

Fourier was the ninth of 12 children from his father’s second

marriage, but was left an orphan a little before his tenth

birthday. This dramatic turn of events does not seem to have

affected his future accomplishments.

As was commonplace in those days, his education was

connected to the church, first at Saint-Germain and later at the

magnificent Romanesque abbey of Saint-Benoı̂t-sur-Loire,

Burgundy, a military school run by Benedictine monks (Fig. 1).

essays

704 Abad-Zapatero � The legacy of J.-B. J. Fourier Acta Cryst. (2021). D77, 703–711



He showed precocious ability in mathematics, and after

completing his education he served as a teacher to the

following generations of pupils entering the school.

The ideals and vortices of the French Revolution also

reached the provincial government of Auxerre and, while

teaching, he was also a member of the revolutionary

committee, later becoming president. He was subsequently

arrested and freed twice in Auxerre. An unexpected nomi-

nation to be a pupil at the École Normale, which had recently

been founded for the purpose of educating elementary-school

teachers, allowed him to escape, at least temporarily, the

turmoil in Auxerre and go to Paris as a ‘Normalien’.

Fourier turned out to be the most capable, and later the

most illustrious, of the early generations of students. His

political activities back in Auxerre caught up with him and he

was arrested again, with one of the charges being having

inspired terrorism. The reasons for Fourier’s final release are

not known. However, it is almost certain that the intervention

of Pierre-Simon Laplace (1749–1827), Joseph-Louis Lagrange

(1736–1813) and Gaspar Monge (1746–1818), who had already

recognized Fourier’s mathematical talents, was crucial. More

important at the time was his recognized ability as a teacher of

mathematics. Thus, fortunately for science in general and for

crystallography in particular, he did not follow the tragic

fortune of his contemporary Antoine-Laurent Lavoisier

(1743–1794).

The revolutionary years ended with the political coup of

Napoleon Bonaparte (1769–1821), and Fourier resurfaced in

Paris as a professor and administrator at the renamed École

Polytechnique, where among others he mentored a brilliant

student, namely Siméon Denis Poisson (1781–1840; of Pois-

son’s distribution and many other contributions bearing his

name). The new political turn of events had a tremendous

impact on Fourier’s life. In 1798, a select group of intellectuals,

scientists, artists, engineers and a military force of 30 000

soldiers and sailors sailed from Toulon to a secret destination

led by Napoleon himself; Fourier was included as a senior

member and professor of the École Polytechnique. Admiral

Nelson’s squadron scoured the Mediterranean looking for the

French armada, and came within two miles but without any

military action. Soon the French soldiers moved towards Cairo,

and on 24 July Bonaparte entered the capital. However, the

French fleet was essentially destroyed a few days later in

Aboukir Bay, and the prospects of returning home looked

grim. Among the chaos that ensued, Napoleon managed to

create by decree the Cairo Institute, including as members the

scientific and intellectual elite of France: Monge, Fourier

(mathematicians), Claude Louis Berthollet (1748–1822;

chemist), Nicolas-Jacques Conté (1755–1805; engineer and

inventor) and Etienne Geoffroy Saint-Hilaire (1772–1844;

naturalist), among others. Having observed the administrative

skills of Fourier during the journey, Bonaparte appointed him

permanent secretary of the Institute. Sessions of the members

were scheduled to take place regularly in the large harem

room of the Palace of Beis (Herivel, 1975).

Bonaparte’s agenda for the institute included many prac-

tical questions (such as what is more practical in Cairo:

windmills or watermills?), but the members of the Institute,

driven by their own curiosity and interests, assembled and

collected an enormous amount of material and artifacts on

many different aspects of Egyptian natural history, art,

monuments and culture. This was later edited and published in

a multivolume collection entitled Description of Egypt super-

vised and prefaced by Fourier himself between 1808 and 1825.

Upon the return of what was left of the Egypt expedition to

France, Napoleon recognized Fourier’s scientific and admin-

istrative contributions as the permanent secretary of the Cairo

Institute and appointed him Prefect of the Department of

Isère (capital Grenoble). There he began his systematic quest

towards understanding the transmission of heat in solids

(Fourier, 1807), which continued during the years 1802–1814.

Historians have argued that his long visit to warmer climates

made it difficult for him to adapt to the cold and damp climate

of Grenoble, and he was particularly sensitive to cold; he had

developed chronic rheumatic pains. Most probably, this

prompted his interest in heat transmission and heat loss in

solids. Besides his contributions to science and completing his

Egyptological work, as Prefect of Isère Fourier demonstrated

extraordinary administrative ability, directing the drainage of

the swamps of Bourgoin covering over twenty million acres,

which were the cause of annual fever epidemics and high

mortality rates in the area. In 1809 Napoleon made him a

baron (Herivel, 1975; Fig. 2).

After the fall of Napoleon in 1815, Fourier returned to Paris

and was appointed director of the Statistical Bureau of the

Seine. This appointment allowed him to devote more time to

his work on the theory of heat transmission and loss. Elected

to the Académie des Sciences in 1817, he became perpetual

secretary in 1822. The merit of his work in Egyptology was

also recognized by his election as a member of the French

Académie des Sciences, and of the Académie National de

Médecine in 1826. As permanent secretary of the Académie

he was at the center of scientific activity in France and saw the

publication of his memoir on heat transmission (Fourier, 1826)

receiving many scientific honors, among them election to the
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Figure 1
View of the interior of the magnificent Romanesque abbey of Saint-
Benoı̂t-sur-Loire, where Fourier first received his mathematical educa-
tion, later becoming a teacher himself. (Author’s personal collection.)



Royal Society of London. His deteriorating health led to a

fatal heart attack on 16 May 1830. He was buried in the

Cimetière du Père Lachaise in Paris, the place of burial of

many illustrious names, Frédéric Chopin (1810–1849) among

them. A suitable memorial related to his achievements in

Egyptology was erected at his grave (Herivel, 1975; Fig. 3),

financed by friends and colleagues including the noted

mathematician Sophie Germain (1776–1831) and the famous

naturalist Georges Cuvier (1769–1832).

3. The development of Fourier methods for the solution
of crystal structures

Reviewing the growing field of crystallography at the Fifth

International Congress of the IUCr in 1960 in Cambridge, UK

(published in Bragg, 1962), the younger Bragg (William

Lawrence Bragg, 1890–1971) summarized the achievements of

the initial period of the field (1912–1920) with six highlights:

(i) the establishment of the wavelength of X-rays, (ii) the

solution of several simple crystal structures with only one

unknown parameter that could be fixed by symmetry, (iii)

the accurate measurement of the diffracted intensity of

the reflections using his father’s X-ray spectrometer, (iv) the

determination and confirmation by measurement of the

Debye correction term due to atomic motion, (v) C. G.

Darwin’s formulae for the reflection intensity of perfect and

mosaic crystals and (vi) the realization and suggestion by his

father that crystal diffraction can be related to the Fourier

components of the scattering elements (atoms) of the crystal.

The last insight was presented by the elder Bragg (William

Henry Bragg, 1862–1942) at the Bakerian Lecture on 18

March 1915 and was later published in the Proceedings of the

Royal Society (Bragg, 1915). He introduced the notion of a

periodic variation of scatterers in the crystal by writing

Let us imagine then that the periodic variation of density has

been analyzed into a series of harmonic terms. The coefficient of

any term will be proportional to the intensity of the reflection to

which it corresponds.

(Bragg, 1915). Assuming a periodic distribution for the atomic

scatterers, he ends the preliminary analysis with the following

Fourier series for a one-dimensional density function,

2k

ac
1þ

a2c2

a2c2 þ �2
cos

�x

a
þ . . .

a2c2

a2c2 þ n�2
cos

n�x

a
þ . . .

� �
;

ð1Þ

where a = d/2 is the spacing of the atoms in one dimension of

the crystal, d is the plane spacing and c is related to an

exponential function describing the density of the atoms.

However, after this initial suggestion, it took another 15

years and several publications from the laboratory of William

Duane (1872–1935) in Harvard and his postdoctoral student

Robert James Havighurst (1900–1991) to deduce the modern

expression for the electron density as a Fourier sum with the

structure factors as coefficients. Duane also recognized the

problem of phasing the structure factors which, in the simplest

case of NaCl, he showed could be solved by symmetry argu-

ments (Duane, 1925). Duane and Havighurst used one-

dimensional Fourier series to determine the distribution of

scattering matter in NaCl and various crystals along cell edges

and face diagonals (Havighurst, 1925a,b).
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Figure 3
Left: the tomb of J.-B. J. Fourier in the Cimetière du Père Lachaise in
Paris. The figure and style relate to his research during the Napoleonic
expedition to Egypt and his position as permanent secretary of the Cairo
Institute. Right: the tomb of Frédéric Chopin in the same cemetery.
(Author’s personal collection obtained from a public domain source:
commons.wikimedia.org.)

Figure 2
Jean-Baptiste Joseph Fourier: lithograph by Louis Boilly (1823). From a
copy in the possession of the Archives of the Académie des Sciences,
Paris. Reproduced with permission, courtesy of the Academy of Sciences,
Archives and historical heritage.



The solution of several mineral structures by the measure-

ment of absolute intensities with Bragg’s X-ray spectrometer,

referred to the integrated (400) reflection of rock salt (Mo K�)

as a standard, was critical to put the Fourier equations on an

absolute scale in relation to the atomic numbers of the

components of the crystals (atomic scattering factors). The

first was barytes (BaSO4; James & Wood, 1925), with 11

parameters. The structure was confirmed by comparing

calculated and observed structure factors. From this point on,

the publications of new structures began to include numerical

comparisons of the amplitudes ‘instead of the mystic letters

v.s., s, m, w, v.w. for very strong to very weak’ (Bragg, 1962).

The application of this quantitative approach to the

measurement of the absolute reflection intensities allowed the

unraveling of the structures of silicates, which had been a goal

for chemists and mineralogists alike. The breakthrough was

the solution of diopside [MgCa(SiO3)2] by Warren & Bragg

(1928), requiring the determination of 14 parameters.

Although the tetrahedral symmetry of the SiO4 groups had

been recognized before, the structure revealed tetrahedral

groups linked through the corners to give the overall SiO3

stoichiometry.

The significance of this structure for the rigorous use of the

Fourier transform in crystallography is that it served one year

later to demonstrate the use of two-dimensional Fourier

analysis to determine the positions of the atoms. W. L. Bragg

spent four months as a visiting professor at the Massachusetts

Institute of Technology and had brought with him an excellent

and complete set of quantitative intensity measurements from

crystals of diopside to a maximum value of sin� for the three

principal zones of the crystal. Calculation of the three two-

dimensional Fourier projections of diopside revealed peaks

corresponding to calcium, magnesium, silicon and oxygen. The

atomic positions derived from solutions of the three different

projections of the structure were in agreement (within 0.5%)

with those published in the original structure a year earlier

(Warren & Bragg, 1928). Although the elder Bragg had some

significant insights into the handling of the data, this analysis

was published by the younger Bragg in a landmark publication

with the revealing title The determination of parameters in

crystal structures by means of Fourier series (Bragg, 1929). In

this publication, Bragg introduced the now standard nomen-

clature of |Fhkl| for the amplitudes and (Fhkl) for the Fourier

coefficients, for which the signs (phases) need to be deter-

mined. The study of ‘organic crystals’ (as opposed to mineral

crystals) and the effective and extended use of Fourier

methods, including ‘Patterson methods’ (Patterson, 1934),

combined with the presence of heavier atoms in the crystals,

allowed the successes with penicillin (Crowfoot et al., 1949;

Figs. 4a and 4b) and vitamin B12 (Hodgkin et al., 1956), the

latter being ‘in a class of its own’ (C63H89CoN14O14P; Brink et

al., 1954; Hodgkin et al., 1956; Bragg, 1962). These landmark

structures established beyond question the value of crystallo-

graphy in deciphering the three-dimensional structures of

unknown chemical entities, including the protein structures

that would soon follow.

The importance of Fourier series and the Fourier transform

in crystallography, as formulated today, has been profusely

presented in historical reviews and textbooks; it will not be

reviewed here. It is indeed the basis of the field from phase

determination to structure solution to structure refinement.

This is also true for the extension of structure determination to

larger macromolecular aggregates using cryo-EM and also

MicroED.

4. The calculation of the Fourier transform in
crystallography

The historical 1929 Bragg publication also anticipated the

momentous problems facing crystallographers in pursuing

their goals of unveiling the three-dimensional structures of

their beloved crystals of ever-increasing complexity using the

Fourier expansion of density in the crystals. There were three

clear steps: (i) the measurement of complete and accurate
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Figure 4
The early tools of crystallography. Top: one of the first three-dimensional
electron-density maps, assembled from two-dimensional transparent
sections spaced appropriately, used to determine the unknown chemical
structure of penicillin by D. Hodgkin and collaborators in the mid-1940s.
Bottom: the ubiquitous Beevers–Lipson strips, the tool of choice to
calculate Fourier transforms prior to the advent of electronic computers.
The image shows the set owned by D. Hodgkin. From the Oxford
Museum of Science. (Author’s personal collection.)



intensities (amplitudes), (ii) the phasing of the structure

factors derived from the intensities beyond the centric

projections and (iii) the time-consuming work of making the

appropriate calculations of increasing complexity.

Thus, a brief mention of the development of methods to

expedite the calculation of Fourier transforms is appropriate.

The computing aids and tools that were developed prior to the

use of digital computers have been very concisely reviewed

(McLachlan, 1983). Noteworthy are Beevers–Lipson strips,

which were the main tool for many generations of crystallo-

graphers (Fig. 4; Beevers & Lipson, 1934, 1936), and several

variants that followed, as well as the use of punched cards and

the associated sorting and manipulating machines. Also

significant and instructive are the various optical devices

(Taylor & Lipson, 1964; Bragg, 1939) that demonstrated the

conceptual connection of X-ray diffraction to the ordinary

light microscope and theories of optical imaging. The impor-

tance of digital computers in crystallography was patently

demonstrated with the solution of the structures of the first

proteins in the late 1950s and early 1960s, and has also been

reviewed up to the mid-1980s (Sparks & Trueblood, 1983).

More importantly, in the context of Fourier methods in

crystallography, is the development of fast and efficient algo-

rithms to compute the Fourier transforms (both forwards and

backwards and Patterson functions) necessary to solve and

refine structures of ever larger complexity and size. Even the

straight calculation of the electron-density function at high

resolution, with a typical sampling of one-third of the reso-

lution by means of the discrete Fourier transform (DFT), can

be a daunting proposition, since the calculation scales as N2

(where N is the number of electron-density map grid points).

The introduction of fast Fourier transform (FFT) algorithms

(Cooley & Tukey, 1965) scaled the calculations to the order of

Nlog10N and had a tremendous impact in crystallography after

its implementation by Lynn Ten Eyck (Ten Eyck, 1973, 1977).

This translates to an improvement of over two orders of

magnitude for N = 1024 (N = 210; Jacobson, 1983). Even with

the limited random access memory resources of the time, it

allowed structure solution by multiple isomorphous replace-

ment and noncrystallographic symmetry averaging of the first

plant viruses Tomato bushy stunt virus (Harrison et al., 1978;

Bricogne, 1976) and Southern bean mosaic virus (Abad-

Zapatero et al., 1980), with unit cells in the range 330–450 Å

and data sets of the order of 300 000 reflections at a resolution

of 2.8 Å. These methods, expanded to include phase extension

and refinement by noncrystallographic symmetry, yielded the

solution of the first animal virus (Human rhinovirus 14) a few

years later (Rossmann et al., 1985).

The introduction of FFT algorithms transformed the

Fourier transform into a fundamental and ubiquitous tool not

only in crystallography but also in the analysis of linear

systems, optics, image reconstruction and analysis, including

all variations of 3D tomography, analysis of random processes,

probability and random variables, quantum physics and the

solution of partial differential equations, among other fields in

science and engineering. It is a tool common to many scientific

endeavors and disciplines (Brigham, 1974).

Nearly two centuries after the mathematical and physical

insights of J.-B. J. Fourier into the phenomena of heat transfer,

I would like to pay homage to Fourier by discussing the

developments of his work for the modern description of

irreversible phenomena, the concept of time and the flow of

time as related to entropy and non-equilibrium thermo-

dynamics, all in the context of the aforementioned book by

Professor Canales (Canales, 2015) and the work of the Nobel

laurate Professor Ilya Romanovich Prigogine (1917–2003).

5. The Bergson–Einstein encounter and the debate over
the concept of time

Although it had multiple practical applications, the relevance

and importance of Fourier’s equation for the transmission of

heat in solids was not part of the mainstream of theoretical

physics even a century after its publication. After World War I,

the physics agenda was dominated by the theory of general

relativity. Two British expeditions, one off the west coast of

Africa and the other in northern Brazil, returned with astro-

nomical observations confirming the predictions of the theory.

Arthur Stanley Eddington (1882–1944; later Sir) returned

from the 1919 Brazil eclipse expedition carrying with him

photographic plates showing the bending of light by the

gravitational field of the massive Sun. The meeting of the

Royal Society in London where the Astronomer Royal for

England announced the vindication of Einstein’s predictions

crowned the physicist as the man who had supplanted

Newton’s vision of the universe and done away with universal

time. Time was merged with space, and only the space–time

continuum was a valid description of our external world.

In this context, the Bergson–Einstein debate of 1922 ended

with the implicit vindication of Einstein, given the weight of

the recent experimental verification of the general theory of

relativity. The conception of time as durée (duration), as

expounded by the French philosopher, did not exist. Only

personal time, ‘psychological time’ as stated by Einstein,

existed. However, Sir Arthur S. Eddington, who wrote about

his fortune to be present when the Astronomer Royal

announced the results of the eclipse expeditions and was an

earlier enthusiastic supporter of relativity, later raised signif-

icant objections to Einstein’s worldview and his conception of

time as connected with the simultaneity of light signals. His

scientific stand respected the experimental verification of

relativity, but did not support its philosophical implications;

he coined the term ‘the arrow of time’ (Eddington, 1927),

connecting it to the one-directional increase in entropy.

From the viewpoint of the mathematical description of

physical phenomena, as a legacy of Newtonian mechanics and

dynamics, in statistical mechanics (Boltzmann), electro-

magnetism (Maxwell’s field equations), relativity, analytical

and Hamiltonian formulations of dynamics and quantum

mechanics all of the equations contain the variable of time (as

t or dt) as a square term. Therefore, they are invariant to the

reversal of time (changing t to �t). This can be illustrated

using the equation for the propagation of a wave (D’Alembert

equation derived from Maxwell’s field equations) in vacuo
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(only one spatial dimension is presented for simplicity; c is the

velocity of propagation and u is the amplitude of the wave),

1

c2

@u2

@t2
¼
@u2

@x2
: ð2Þ

In contrast, the mathematical treatment of the propagation

and transmission of heat demonstrated by Fourier in 1822

showed for the first time that the phenomenon depends on the

first-order derivative of time on one side of the equation and

the second derivative of the spatial coordinates on the other.

These physical phenomena will have a ‘time direction’. This is

certainly discernable to the casual observer, since the equation

has the same mathematical dependence as the well known

diffusion equation if one replaces the temperature T in

Fourier’s equation by the concentration C in the more familiar

Fick’s law of diffusion. These physico-chemical phenomena

are irreversible and are mathematically described by non-

equilibrium thermodynamics (k is the coefficient of heat

conductivity of the material; Katchalsky & Curran, 1965),

@T

@t
¼ k

@T2

@x2
: ð3Þ

6. Mathematical description of irreversible phenomena
and its implications

The 20th century Belgian physical chemist Ilya Romanovich

Prigogine, whose seminars I was fortunate enough to attend

during my graduate student days at the University of Texas at

Austin, had this conflict in mind from his early student days.

Reviewing his nascent interest in the notion of time, he wrote

It is now more than fifty years since I published my first paper on

nonequilibrium thermodynamics, in which I pointed out the

constructive role of irreversibility. To my knowledge, this was

also the first paper that dealt with self-organization as associated

with distance from equilibrium. After so many years, I often

wonder why I was fascinated with the problem of time, and why

it took so very long to establish its relationship with dynamics.

(Prigogine, 1996).

Given his strong interest in the issues of time and non-

equilibrium thermodynamics, Prigogine joined the existing

school in Brussels founded by Théophile Ernest De Donder

(1870–1957). Over the years, the work of Professor Prigogine

and his associates at the University of Brussels and at the

University of Texas at Austin has been published extensively

in books, scientific articles and publications for wider audi-

ences, with the latter publications discussing the philosophical

implications of their technical findings. In the midst of his

intense work on nonequilibrium thermodynamics and its

implications for the concept of time in nonequilibrium

processes, Professor Prigogine reviewed for Nature a series of

essays on Bergson, including the translated transcripts of the

Bergson–Einstein meeting in Paris, and wrote

Einstein gave a presentation of his theory of special relativity,

and Bergson expressed some doubts about it. It is true that

Bergson had not understood Einstein. But it is also true that

Einstein had not understood Bergson. Bergson was fascinated

by the role of creativity, of novelty in the history of the universe.

But Einstein did not want any directed time. He repeated often

that time, more precisely the arrow of time, is an ‘illusion’. So,

these ideologies seem to be irreconcilable.

(Canales, 2015).

Prigogine’s scientific contributions, as well as those of his

collaborators and colleagues, have attempted to reconcile

some of Bergson’s insights with the laws of physics for over

half a decade. I will present a brief summary and my own

perspectives and future avenues, including some speculations

on what could follow.

Even though Fourier’s memoir had been presented a

century earlier, descriptions of the physical phenomena to

which Fourier’s equation was applicable were not considered

to be part of the Bergson–Einstein debate. Apparently, there

was not any solid physical description of time that could be

related to the ‘time duration’ as required to explain the irre-

versible processes that occur all around us in nature. Processes

such as diffusion, heat transport, ‘dissipative structures’,

evolution through fluctuations and related phenomena were

beyond the scope of rigorous mathematical analysis and were

therefore distrusted by theoretical physicists.

After the work of Prigogine and his colleagues at the

University of Texas at Austin and in Belgium, as well as other

scientists currently extending and exploring these ideas, now

there is such a mathematically sound description of these

processes. For processes that include the thermodynamic

description of living systems (humans included), the distinc-

tion between ‘physical time’, understood as ‘physico-chemical

time’, and ‘duration’ (‘durée’) does not exist. There could also

be a physiological and personal dimension of time, but for this

we still do not have a detailed physico-chemical explanation

and description. Nonetheless, this could change in the second

half of the 21st century as the study of the molecular,

biochemical and neurological basis of the brain circuitry

continues.

Einstein was defending what I would call ‘inertial or

mechanical’ or better ‘dynamic’ time, related to motion and

the transmission of signals and limited by the constant velocity

of light, which is a key invariant in his vision of the universe.

Beyond this, Einstein could not conceive of any other time

except for psychological or personal time. After the work of

Prigogine and venturing into the future, I would suggest that it

is possible to conceptually distinguish three types of time.

(i) Inertial or dynamic time. This is tied to inertial systems in

motion and is related completely to Einstein’s notion of time.

This is the time of mechanical and dynamic phenomena in

both classical and quantum mechanics; it is reversible and

appears in equations as t2 or dt2 in the denominator of

mechanical equations. The variable t can be changed to�t and

nothing changes. Enough has been written about this and

more so related to the Bergson–Einstein debate.

(ii) Physico-chemical time. This is connected to physico-

chemical processes in which matter/energy are consumed and

dissipated. It does relate to the concept of durée or duration

defended by Bergson. The simplest and most striking example
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of this is the ‘burning of a candle’, with obvious reference to

the life spans of organisms, human beings included. This time

is directly related to irreversible processes in which heat is

dissipated and implies a sense of direction, i.e. an arrow or flow

of time. This is the gap that the work of Prigogine has filled

with his rigorous, mathematically sound, concepts of ‘entropy

production’ and ‘microscopic irreversibility’ and his distinc-

tions as to the behavior of systems: ‘near equilibrium’ versus

‘far from equilibrium’. This distinction is important to

understand the richness of the phenomena that can occur in

the latter, and its implications for microscopic and macro-

scopic evolution: order through fluctuations, including

macroscopic and biological evolution. This could be expanded

to ‘biological time’ or ‘geological time’ as a subtype of

physico-chemical time or as a category on its own.

(iii) Psychological time. This is perceived by humans and

possibly also certain animals, and includes individual time

perception and the ‘relativity’ of time spans among humans

and among human situations. It is quite conceivable, in my

view, that by the end of the current century, following

advances in the study of the circuitry and the biochemical and

molecular mechanisms of the brain, we may explain how we

humans conceive and experience time, and the individual

variations that each of us experiences. Pressing questions to

answer could be: are there neural correlates for time? Is the

perception of human time related to our own memories? Is it

related to our own individuality as human beings? Is it related

to consciousness? I could speculate that certain animal species

could serve as animal models, in the same way that we have

used ‘animal models’ to study psychological responses to other

phenomena such as audition, music perception, language

acquisition and spatial skills; there is so much that we do not

yet know.

7. Continuing the dialog with nature

In her book about the Bergson–Einstein debate, Professor

Canales discusses in a final section (Postface) one of the books

presenting the implications of Prigogine’s work for a wider

audience: Order Out of Chaos, Man’s New Dialog with Nature.

She quotes the authors

Physics, today, no longer denies time. It recognizes the

irreversible time of evolutions toward equilibrium, the rhythmic

time of structures whose pulse is nourished by the world they are

part of, the bifurcating time of evolutions generated by

instability and amplifications of fluctuations, and even micro-

scopic time, which manifests the indetermination of microscopic

physical evolutions.

(Prigogine & Stengers, 1984) and she asks: has science vindi-

cated Bergson?

She admits that a few thinkers were enthusiastic about the

‘new alliance’, but the majority did not embrace the new vision

positively. What Professor Canales describes as ‘science wars’

ensued in the 1990s, confronting physicists and humanists with

arguments that could be traced back to the Bergson–Einstein

debate. She argues that the controversy rages on and is still

feeding the gap between science and the humanities. In my

view, this interpretation is only partially correct and incom-

plete.

Prigogine’s Nobel Prize lecture in 1977 acknowledges that

the new avenues opened by the study of irreversible

phenomena have resulted in a rapprochement of the different

notions of time in theoretical physics and in other aspects of

the world we live in:

These questions will probably be clarified in the coming years.

But already now the development of the theory permits us to

distinguish various levels of time: time as associated with

classical or quantum dynamics, time associated with irreversi-

bility through a Lyapounov function and time associated with

‘history’ through bifurcations. I believe that this diversification

of the concept of time permits a better integration of theoretical

physics and chemistry with disciplines dealing with other aspects

of nature.

(Prigogine, 1977).

Expanding briefly on Prigogine’s quote, we can distinguish

three levels of time. Firstly, Einstein’s time and the time of

classical and quantum dynamics, where the variable time (t)

appears as a second derivative and therefore processes can run

reversibly for t and �t. Secondly, ‘Bergsonian’ time, individual

time, as in the ‘burning of a candle’, diffusion processes, heat

transport and human life, i.e. duration. Time is only present in

the equations as the first derivative; thus, the processes are not

reversible. This is time as in irreversible processes near equi-

librium. Finally, ‘creative evolution’ time as in the evolution of

processes far from equilibrium subject to ‘bifurcation points’

(unpredictability), possibly with extension, among others, to

the evolution of macroscopic processes and conceivably to

‘macroscopic biological evolution’, e.g. Darwinian evolution.

Considering the importance that time has had through the

centuries in philosophy and human culture, I would dare to

extend the last sentence of Prigogine’s quotation to read

I believe that this diversification of the concept of time permits a

better integration of theoretical physics and chemistry with

disciplines dealing with other aspects of nature and human

culture, including philosophy.

(italics added for my slight revision and emphasis).

Unfortunately, from this point on Canales’s text emphasizes

the controversy of the so-called ‘science wars’ between

physicists and humanists, without emphasizing and explaining,

bringing down to the level of the reader, the findings of

Prigogine and his colleagues and their implications to clarify,

and put into scientific terms, some of Bergson’s insights.

There is an extensive review of the viewpoints of the

different philosophers and schools that followed after the

Bergson–Einstein debate. Regrettably, if Bergson did not

understand Einstein, the current philosophers have not

digested or fully understood the enormous influence and

‘explanatory power’ of Prigogine’s studies to illuminate the

concepts of ‘time’ that were alien to Einstein. These concepts

are now familiar to scientists studying physico-chemical and

biological phenomena at the molecular and cellular levels

(Babloyantz, 1986), and our macromolecular and structural

insights will be essential elements in fully understanding them
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in the future. I will conclude with a quotation from Professor

Prigogine:

I have always considered science to be a dialog with nature. As

in a real dialog, the answers are often unexpected — and

sometimes astonishing.

(Prigogine, 1996, p. 57).

In summary, the contributions of J.-B. J. Fourier to crystal-

lography and basic and applied mathematics nearly two

centuries ago were instrumental in understanding important

physical problems of his time such as the transmission of heat

in solid objects. In addition, he opened the field of the math-

ematical treatment of irreversible phenomena related to the

future concepts of thermodynamics, entropy and the flow of

time. In the 20th century, the ensuing analyses and study of

irreversible phenomena, as developed by the work of Prigo-

gine and his school, has opened the doors to other ‘physical’

conceptions of time well beyond Einstein’s limited view that

made him collide with Bergson’s philosophical insights. We

should be cognisant and proud of the fact that J.-B. Joseph

Fourier, who provided the essential conceptual and mathe-

matical methods for crystallography among many other

scientific achievements, also opened the first window to reveal

the connection between irreversible processes and the

processes related to our durée as human beings.
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