Research   (if you don't see a menu on the left, use this link)
Get the logotype of the CBE Department The main objective of the Department (CBE = Cristalografía y Biología Estructural = Crystallography and Structural Biology) is to interpret biological phenomena in terms of structural studies at the atomic, molecular and supramolecular level, trying to understand the basic processes of life and to use this knowledge to solve biotechnological and biomedical problems.

To achieve this objective, we combine and develop molecular biology techniques, high throughput crystallization technologies, crystallographic techniques and data-base mining. The research of the Department is focused in several interrelated lines, including structural enzymology, structure and disease, protein-lipid interaction and structure of complex modular systems. 
To see some short movies about the CBE department, our labs and some of our projects, follow this link.

Projects Main current projects:
Other projects:
The Department is a partner of the Spanish Project called "La Factoria", a collaborative project of nine Spanish research groups to create an integrated platform for research and services in crystallization and crystallography.

La Factoría


Main current projects


Structural Biology of Cellular Stress Response
Project Leader: Armando Albert
CAR. Click on the image to get a larger one
A new family of scaffold proteins orchestrates plant response to environmental stresses. Drought and salinity are the major threats to crop productivity at a worldwide scale. A fundamental portion of the plant response to these environmental stresses occurs at the cell membrane, where the molecular machinery to preserve cell turgor and the appropriate balance of intracellular ions is found. The C2-domain ABA-related (CAR) family of proteins contributes to these processes by delivering the regulatory proteins controlling this machinery from other cell compartments to the cell membrane. Our analysis provides an explanation on how CAR proteins specifically reach a particular membrane place to develop their function and trigger the plant defense mechanism against stress.

Click on the left image to get a larger one.

Selected reference:

Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling
Diaz, M; Sanchez-Barrena, MJ; Gonzalez-Rubio, JM; Rodriguez, L; Fernandez, D; Antoni, R; Yunta, C; Belda-Palazon, B; Gonzalez-Guzman, M;  Peirats-Llobet, M; Menendez, M; Boskovic, J; Marquez, JA; Rodriguez, PL; Albert, A
Proceedings of the National Academy of Sciences, PNAS (2016) 113, E396-E405 (doi: 10.1073/pnas.1512779113)



CAR. Click on it to get a larger image
Plants have to endure adverse environmental conditions, among them, drought and salinity constrain agricultural productivity most dramatically. Many of the plant adaptive responses take place at cell membrane where it is required the regulation o a variety of ion channels and transporters. This adjusts the intracellular ion concentration necessary for cell live. From a molecular point of view, the levels of abscisic acid (ABA) and calcium encode the information to orchestrate cell response to stress. We have discovered and characterized a new family of proteins, CAR for C2-domain ABA-related, that target ABA recognition machinery to the cell membrane. The joined structural and biochemical analyses has provided a working model that illustrates how CAR proteins anchor to plasma membrane and specifically bind the ABA receptors. As the activity of these proteins is dependent of calcium, they represent a central hub decoding ABA and calcium stimuli and provide a target for biotechnological work for the use of plants in our benefit.

Click on the left image to get a larger one.

Selected reference:

C2-Domain Abscisic Acid-Related Proteins Mediate the Interaction of PYR/PYL/RCAR Abscisic Acid Receptors with the Plasma Membrane and Regulate Abscisic Acid Sensitivity in Arabidopsis
Rodriguez, L; Gonzalez-Guzman, M; Diaz, M; Rodrigues, A; Izquierdo-Garcia, AC; Peirats-Llobet, M; Fernandez, MA; Antoni, R; Fernandez, D; Marquez, JA; Mulet, JM; Albert, A; Rodriguez, PL
Plant Cell (2014)  26, 4802-4820  (doi:10.1105/tpc.114.129973)




CIPK. Click on it to get a larger image  
The transport of ions through the plant cell membrane establishes the key physicochemical parameters for cell function. Stress situations such as those created by soil salinity or low potassium conditions alter the ion transport across the membrane producing dramatic changes in the cell turgor, the membrane potential, and the intracellular pH and concentrations of toxic cations such as sodium and lithium. As a consequence, fundamental metabolic routes are inhibited. The CIPK family of twenty-six protein kinases regulates the function of several ion transporters at the cell membrane to restore ion homeostasis under stress situations. Our analyses provide an explanation on how the CIPKs are differentially activated to coordinate the adequate cell response to a particular stress.

Click on the left image to get a larger one.

Selected reference:

Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress
Chaves-Sanjuan, A; Sanchez-Barrena, MJ;  Gonzalez-Rubio, JM; Moreno, M;  Ragel, P; Jimenez, M; Pardo, JM; Martinez-Ripoll, M; Quintero, FJ; Albert, A
Proceedings of the National Academy of Sciences (2014) 111, 4532-4541  (doi:10.1073/pnas.1407610111)



 
SOS1. Click on the image to see a larger picture
Due to their sessile nature, plants have to endure adverse environmental conditions. Soil salinity is a severe and increasing constraint on the productivity of agricultural crops. The Arabidopsis thaliana Na+/H+ antiporter SOS1 is essential to maintain low intracellular levels of the toxic Na+ under salt stress, and it is a biotechnological target for crop improvement. Available data show that the plant SOS2 protein kinase and its interacting activator, the SOS3 calcium-binding protein, function together in decoding calcium signals elicited by salt stress and regulating the phosphorylation state and the activity of SOS1. Molecular genetic studies have shown that the activation implies a domain reorganization of the antiporter cytosolic moiety indicating that there is a clear relationship between function and molecular structure of the antiporter. To provide information on this issue, we have carried out in vivo and in vitro studies on the oligomerization state of SOS1. In addition, we have performed electron microscopy and single particle reconstruction of negatively stained full-length and active AtSOS1. Our studies show that the protein is a homodimer that contains a membrane domain similar to that found in other antiporters of the family, and an elongated, large and structured cytosolic domain. Both the transmembrane and cytosolic moieties contribute to the dimerization of the antiporter. The close contact between the transmembrane and the cytosolic domains provide a link between regulation and transport activity of the antiporter, and suggests an allosteric regulation of the antiporter. Structural studies on the different components of Salt Overly Sensitive pathway carried out in this laboratory (Sánchez-Barrena et al. 2005, 2007) provide understanding on how the molecular machinery for salt tolerance works and open paths towards biotechnological applications.

Click on the left image to see a larger drawing

Selected reference:

Núñez-Ramírez, R; Sánchez-Barrena, MJ; Villalta, I; Vega, JF; Pardo, JM; Quintero, FJ; Martinez-Salazar, J; Albert, A
Journal of Molecular Biology (2012) 424, 283-294  (doi:10.1016/j.jmb.2012.09.015)


PchP. Click on it to see a larger image  

The structural analysis of new biological activities of plant pathogens opens opportunities to rationally improve crops. The Pseudomonas haemolytic phospholipase-C (PlcH) and phosphorylcholine phosphatase (PchP) coordinately degrade the phospholipids of the host cell membrane. PlcH acts on phosphatidylcholine to produce phosphorylcholine (Pcho), and PchP hydrolyzes Pcho into choline and inorganic phosphate. The crystallographic study of PchP shows that the enzyme folds into two domains involved in substrate hydrolysis and recognition respectively. PchP shows an additional substrate binding inhibitory site that blocks products on the active site. The joined structural and biochemical study shows that PchP activity is based in the interplay and geometry between these sites and domains. In this paper, we uncover the 3D-picture of the PchP catalytic cycle and the structural basis for the recognition of the diverse substrate molecules. This provides the basis for using PchP as a target for drug design against pathogens.

Click on the left image to see a larger drawing

Selected references:

Infantes, L; Otero, LO; Beassoni, PR; Boetsch, C; Lisa, AT; Domenech, CE; Albert, A
Journal of Molecular Biology (2012) 423, 503–514  (doi:10.1016/j.jmb.2012.07.024)





Protein kinase OST1. Click on the image to see an animated gif Arabidopsis thaliana OST1 belongs to the SnRK2 family of protein kinases. This family and their interacting regulators, the protein phosphatases type 2C (PP2C) function together in decoding plant cell signals elicited by different environmental stimuli. Available data suggest a general mechanism in which the interaction of SnRK2 and PP2C regulates the phosphorylation state and activity of SnRK2 and this in turn, regulates the phosphorylation state and the activity of various ion transporters and transcription factors. OST1 is activated by osmotic stress as well as by abscisic acid (ABA). The recent identification of the PYR family of ABA receptors as inhibitors of the PP2C phosphatases has provided the basis of the ABA dependent regulation of this family of kinases. At molecular level, structural studies have shown that sensing ABA involves a molecular rearrangement of the PYR receptor that provides a site for interaction with PP2Cs active site. This information helped to explain how the pathway captures the ABA message but it did not provide insights about how SnRK2 handles the signal. The structure of OST1 provides the basis for the ABA dependent and ABA independent regulation of the kinase activity and a mechanism for the control of the opposing phosphatase-binding and kinase activities.

Click here, or on the image, to see an animated gif.

Selected references:

Yunta, C; Martínez-Ripoll, M; Jian-Kang Zhu, J-K; Albert, A
Journal of Molecular Biology (2011) 414, 135–144 (doi:10.1016/j.jmb.2011.09.041)

Yunta, C; Martínez-Ripoll, M; Albert, A
Acta Crystallographica (2011) F67, 364–368 (doi:10.1107/S1744309110053807)



sos2-sos3

The crystal structure of the binary complex of Ca-SOS3 with the C-terminal regulatory moiety of SOS2 resolves central questions regarding the dual function of SOS2 as a kinase and a phosphatase-binding protein. A comparison with the structure of unbound SOS3 reveals the basis of the molecular function of this family of kinases and their interacting calcium sensors. Furthermore, our study suggests that the structure of the phosphataseinteraction domain of SOS2 defines a scaffold module conserved from yeast to human.

Selected references:

Sánchez-Barrena, MJ; Fujii, H; Angulo, I; Martínez-Ripoll, M; Zhu, J-K; Albert, A
Molecular Cell (2007) 26, 427-435  (doi:10.1016/j.molcel.2007.04.013)


sos3 X-ray crystallography shows that SOS3 displays a calmodulin-like fold but forms dimers. Analytical ultracentrifugation and circular dichroism studies confirm that calcium not only induces a conformational change (as in the case of calmodulin) but also promotes dimerization of SOS3. It is proposed that dimerization of SOS3 (mediated by the C-terminal part) duplicates the efficiency of membrane binding (mediated by myristoylation and a polylysine stretch at the N-terminus). Membrane binding of SOS3 is essential for its biological function, probably by recruiting protein kinase SOS2 to its transporter substrates such as the H+/Na+ antiporter SOS1. http://www.facultyof1000.com/; Selected by Ramon Serrano, Evaluated 25 Feb 2005)

Selected references:

Sánchez-Barrena, MJ; Martinez-Ripoll, M; Zhu,J-K; Albert, A
Journal of Molecular Biology (2005), 345, 1253-1264  [PDF-copy]


Hal2
Enzymes such as yeast HAL2 and plant homologs, which are proteins belonging to the inositol monophosphatase family and are sodium inhibited. It is known that HAL2 is the first cellular target of sodium under salt stress conditions. 


Selected references:

Patel, S; Martinez-Ripoll, M; Blundell, TL; Albert, A 
Journal of Molecular Biology (2002), 320, 1087-1094  [PDF-copy]

Albert, A; Yenush, L; Gil-Mascarell, MR; Rodriguez, PL; Patel, S; Martinez-Ripoll, M; Blundell, TL; Serrano, R 
Journal of Molecular Biology (2000), 295, 927-938  [PDF-copy]


Hal3
Domains from enzymes or peptidic regulators of the cellular pathways involved in the response to the salt stress. HAL3 is a plant flavoprotein that regulates a novel signaling pathway involved in cell growth and stress response.

Selected references:

Albert, A; Martinez-Ripoll, M; Espinosa-Ruiz, A; Culiañez-Macia, F; Serrano, R 
Structure with Folding and Design (2000) 8, 961-969  [PDF-copy]

 [Further information on this subject in a pdf file]

Inositide Signalling Structural Biology
Project Leader: Beatriz González Pérez
 
The inositides are second messengers that participate in many key events as Ca2+ mobilization, vesicle trafficking, endocytosis, DNA reparation etc. We are focused on the kinases that regulate the levels of inositides, with the purpose of understanding their substrates specificity and their catalytic and regulatory mechanism. As a final goal, we are interested in designing enzymatic inhibitors as potential drugs for diseases caused by their wrong regulation.


IP5 2-K mutant (see a bigger figure)

insp5 2-kinase, see a movie

Phytate or InsP6 is a key compound in cells, involved in essential cellular processes as RNA export or DNA editing. In addition, InsP6 is a starting point for highly phosphorylated inositides, compounds involved, among other processes, in cancer and apoptosis. In plants, InsP6 accumulates in seeds. Grain-based diets cause diseases as anaemia or Zinc deficiencies, as it happens in developing countries, due to the potent chelating capacity of InsP6.

Our work has showed the molecular basis of how phytate is synthesized in cells by IP5 2-K. The crystal structures reveal how the enzyme recognizes its substrates through a novel structural region (CIP-lobe), and the elements involved in the myo-inositol isomer selection.

Recently, we have crystallized a mutant of 
IP5 2-K that has allowed us to crystallize the different states of the enzyme and determine the large structural changes occurring in IP5 2-K upon nucleotide or inositide binding. These results provide a broad structural basis to design specific inhibitors for IP5 2-K. These inhibitors would help in a deeper study of IP5 2-K function, drug design or crop development with low phytic acid content.

Selected references:

Baños-Sanz, J; Sanz-Aparicio, J; Whitfield, H; Hamilton, C;  Brearley, CA; Gonzalez, B
Journal of Biological Chemistry (2012) 287, 29237-29249 (doi:10.1074/jbc.M112.363671)

González, BBaños-Sanz, J; Villate, M;  Brearley, C; Sanz-Aparicio, J
Proceedings of the National Academy of Sciences (2010) 107, 9608-9613 
(doi:10.1073/pnas.0912979107)

Baños-Sanz, J.I., Villate, M., Sanz-Aparicio, J., Brearley, C.A. and González B.
Acta Crystallographica (2010) F66, 102-106  (doi:10.1107/S1744309109051057)


pi3k-kinase
pi3k-complex

Phosphatidyl Inositol Kinases (PI3Ks) are a family of enzymes involved in cancer, autoimmune and inflammatory diseases and constitute good targets for drug design. The structure of PI3K in complex with different inhibitors allowed us to determine essential aspects of this enzyme. In first place, we were able to characterize the protein regions that control the selectivity and potency of the inhibition. In second place, we could understand for the fist time the structural basis under the dual selectivity of certain inhibitors against PI3K and tyrosine kinases, the most pursued targets in cancer. Our results gave the structural basis to assist in rational drug design for these targets, oriented to overcome the problems of drug resistance and minimize the side-off target effects.

Selected references:

Apsel, B; Blair. JA; González, B; Nazif, TM; Feldman, ME; Aizenstein, B; Hoffman, R; Williams, RL; Shokat, KM, Knight, ZA
Nature Chemical Biology (2008) 4, 691-699


Knight, ZA; González, B;  Feldman ME; Zunder, ER; Goldenberg, DD; Williams, O; Loewith, R; Stokoe, D; Balla, A; Toth, B;, Balla, T;  Weiss, WA; Williams, R;. Shokat, KM
Cell (2006) 125, 733-747    
[PDF-copy]

Teo, H; Perisic, O; González, B; Williams, RL
Developmental Cell (2004) 7, 559-569    
 [PDF-copy]


ip3-kinase
ip3-kinase
We have solved the structure of the first inositide kinase acting on a soluble inositol, that from IP3 3-kinase. This enzyme uses IP3 as a substrate, a well-known second messenger involved in Ca2+ release from internal stores. Its product, IP4, has been shown to be essential in T-lymphocyte development. The structure of IP3 3-K revealed that this family of enzymes conserves some fold elements with the protein kinase family and binds ATP in a similar way. Nevertheless, the inositide substrate is bound in a new lobe formed by four α-helices. IP3 3-K represented a template for other inositide kinases and its structure lead us to predict that the inositide binding lobe is unique in IP3 3-K, in agreement with its high specificity as compared to other members.

Selected references:

González, B; Schell, MJ; Letcher, AJ; Veprintsev, DB; Irvine, R; Williams, RL
Molecular Cell (2004) 15, 689-701

Structural Biology of Bacterial Pathogenesis  (read more...) 
Project Leader: Juan A. Hermoso
 
Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and most of them are directly linked to antibiotic resistance. The main goal of this project is to generate the knowledge, based on an integrative study of some critical bacterial cell wall remodeling processes, to provide new pharmacological targets in the fight against some of the most dangerous multidrug-resistant pathogens. Experimental approaches include the use of protein engineering, X-ray diffraction techniques, biophysical characterization, bioinformatics and finally in vitro cell culture infection studies and in vivo infection experiments. Emphasis is placed on studies into molecular aspects of (i) the virulence mechanisms mediated by pneumococcal surface proteins, (ii) characterization of the pneumococcal divisome, (iii) cell-wall recycling and antibiotics resistance in G(-) pathogens, (iv) Characterization of multidrug resistance mechanisms in pathogen MRSA
(Methicillin-resistant Staphylococcus aureus), and (v) Synthesis and regulation of cell wall mediated by non-canonical D-amino acids (NCDAA). We also focus on the host proteins involved in pathogen recognition and on the structural characterization of novel endolysins (phage-encoded enzymes that break down bacterial peptidoglycan) with potential application as antibacterial agents (enzybiotics).
 
NagZ. Click on it to get a larger image
The N-acetylglucosaminidase NagZ of Pseudomonas aeruginosa catalyzes the first cytoplasmic step in recycling of muropeptides, cell-wall-derived natural products. This reaction regulates gene expression for the 
β-lactam resistance enzyme, β-lactamase. The structural and functional aspects of catalysis by NagZ were investigated by a total of seven X-ray structures, three computational models based on the X-ray structures, molecular-dynamics simulations and mutagenesis. The structural insights came from the unbound state and complexes of NagZ with the substrate, products and a mimetic of the transient oxocarbenium species. The mechanism involves a histidine as acid/base catalyst, which is unique for glycosidases. The turnover process utilizes covalent modification of D244, requiring two transition-state species and is regulated by coordination with a zinc ion. The analysis provides a seamless continuum for the catalytic cycle, incorporating the large motions by loops that surround the active site.

Selected references:

Acebron, I; Mahasenan, K; De Benedetti, S; Lee, M; Artola-Recolons, C; Hesek, D; Wang, H; Hermoso, JA; Mobashery, S
Journal of the American Chemical Society (2017) 139, 6795-6798  (doi:10.1021/jacs.7b01626)




PBP2a in complex with lactams. Click on it to get a larger image  
The mechanism of the β-lactam antibacterials is the functionally irreversible acylation of the enzymes that catalyze the cross-linking steps in the biosynthesis of their peptidoglycan cell wall. The Gram-positive pathogen Staphylococcus aureus uses one primary resistance mechanism. An enzyme, called penicillin-binding protein 2a (PBP2a), is brought into this biosynthetic pathway to complete the cross-linking. PBP2a effectively discriminates against the β- lactam antibiotics as potential inhibitors, and in favor of the peptidoglycan substrate. The basis for this discrimination is an allosteric site, distal from the active site, that when properly occupied concomitantly opens the gatekeeper residues within the active site and realigns the conformation of key residues to permit catalysis. We address the molecular basis of this regulation using crystallographic studies augmented by computational analyses. The crystal structures of three β-lactams (oxacillin, cefepime, ceftazidime) complexes with PBP2a, each with the β- lactam in the allosteric site, defined (with preceding PBP2a structures) as the “open” or “partially open” PBP2a states. A particular loop motion adjacent to the active site is identified as the driving force for the active-site conformational change that accompanies active-site opening. Correlation of this loop motion to effector binding at the allosteric site, in order to identify the signaling pathway, was accomplished computationally in reference to the known “closed” apo-PBP2a X-ray crystal structure state. This correlation enabled the computational simulation of the structures coinciding with initial peptidoglycan substrate binding to PBP2a, acyl enzyme formation, and acyl transfer to a second peptidoglycan substrate to attain cross-linking. These studies offer important insights into the structural bases for allosteric site-to-active site communication and for β-lactam mimicry of the peptidoglycan substrates, as foundational to the mechanistic understanding of emerging PBP2a resistance mutations.

Selected references:

Mahasenan, K; Molina, R; Bouley, R; Batuecas, M; Fisher, J; Hermoso, JA; Chang, M; Mobashery, S
Journal of the American Chemical Society (2017) 139, 2102-2110  (doi:10.1021/jacs.6b12565)



AmpR. Click on it to get a larger image

A complex link exists between cell-wall recycling/repair and the manifestation of resistance to β-lactam antibiotics in many Enterobacteriaceae and Pseudomonas aeruginosa. This process is mediated by specific cell-wall-derived muropeptide products. These muropeptides are internalized into the cytoplasm and bind to the transcriptional regulator AmpR, which controls the cytoplasmic events that lead to expression of β-lactamase, an antibiotic-resistance determinant. The effector-binding domain (EBD) of AmpR was crystallized and its structure solved to 2.2 Å resolution. The EBD crystallizes in a “closed” conformation, in contrast to the “open” structure required to bind the muropeptides. Structural issues of this ligand recognition are addressed by molecular dynamics simulations, which reveal significant differences among the complexes with the effector molecules. The EBD binds to the suppressor ligand UDP-N-acetyl-β-d-muramyl-l-Ala-γ-d-Glu-meso-DAP-d-Ala-d-Ala and binds to two activator muropeptides, N-acetyl-β-d-glucosamine-(1→4)-1,6-anhydro-N-acetyl-β-d-muramyl-l-Ala-γ-d-Glu-meso-DAP-d-Ala-d-Ala and 1,6-anhydro-N-acetyl-β-d-muramyl-l-Ala-γ-d-Glu-meso-DAP-d-Ala-d-Ala, as assessed by non-denaturing mass spectrometry. The EBD does not bind to 1,6-anhydro-N-acetyl-β-d-muramyl-l-Ala-γ-d-Glu-meso-DAP. This binding selectivity revises the dogma in the field.


Selected references:

Dik, DA; Domínguez-Gil, T; Lee, M; Hesek, D; Byun, B; Fishovitz, J; Boggess, B; Hellman, LM; Fisher, JF; Hermoso, JA; Mobashery, S
Journal of the American Chemical Society (2017) 139, 1448–1451  (doi:10.1021/jacs.6b12819)


CbpL. Click on it to get larger image
The human pathogen Streptococcus pneumoniae is decorated with a special class of surface-proteins known as choline-binding proteins (CBPs) attached to choline (Cho) moieties from cell-wall teichoic acids (TA). By a combination of X-ray crystallography, NMR, molecular dynamics techniques and in vivo virulence and phagocytosis studies, we provide structural information of choline-binding protein L (CbpL) and demonstrate its impact on pneumococcal pathogenesis and immune evasion.

Selected references:

Gutiérrez-Fernández, J; Saleh, M; Alcorlo, M; Gómez MA;, Pantoja-Uceda, D; Treviño, MA; Voß, F; Abdullah, MR; Galán-Bartual, S; Seinen, J;  Sánchez-Murcia, PA; Gago, F; Bruix, M; Hammerschmidt S; Hermoso, JA
Scientific Reports (2016) 6, art. 38094  (doi:10.1038/srep38094)





MltF. Click to get a larger image
The bacterial cell wall is an elastic polymer that defines the shape of the bacterium and prevents cell lysis under high osmotic pressure. Since the cell wall is a unique part of the bacteria it becomes very interesting target.
Lytic transglycosylases (LTs) cleave the non-hydrolytic fragmentation of the β-1,4-glycosidic bond between the main components of peptidoglycan (PG). The mechanism by which LTs catalyse the fragmentation is unique. MltF is a modular LT from P. aeruginosa, the three-dimensional structure confirms that the enzyme is organized in two modules, the regulatory domain and the catalytic domain. Occupancy of the regulatory module by a PG-derived-muropeptide causes a dramatic conformational change, which opens the active site for catalysis. The richness of the structural information on MltF reveals this unique regulatory mechanism and provides a foundation for further inquiry in understanding of its contribution toward the complex orchestration of the structure of the peptidoglycan of the P. aeruginosa cell wall.

Selected references:

Domínguez-Gil, T; Lee, M; Acebrón-Avalos, I; Mahasenan, KV; Hesek, D; Dik, DA; Byun, B; Lastochkin, E; Fisher, JF; Mobashery S; Hermoso, JA
Structure (2016) 24, 1729-1741  (doi:10.1016/j.str.2016.07.019)


SltB3. Click on it to get a larger image
Pseudomonas aeruginosa
is a human pathogen that causes pneumonia, bloodstream infections, urinary tract infections, and surgical site infections. Strains of P. aeruginosa have been found to be broadly resistant to antibiotics such us aminoglycosides, cephalosporins, fluoroquinolones, and carbapenems. Recycling of the cell wall in bacteria is linked to antibiotic resistance and virulence mechanisms. Lytic transglycosylases (LTs) initiate the cell-wall recycling processes by cleaving crosslinked and uncrosslinking glycan strands. 3D structure of LT SltB3  has four domains arranged in a unique annular conformation. The structures of SltB3 in complex with a substrate analog and with a reaction-product analog together with the study of the reaction catalyzed by this enzyme using liquid chromatography and high-resolution mass-spectrometric analyses (LC/MS/MS) revealed that SltB3 is an exolytic enzyme that recognizes a minimum of four sugars in its substrate but can process a substrate comprised of a peptidoglycan of 20 sugars. Interestingly, the high-resolution structures of the SltB3 complexes provided indications on how the peptidoglycan and its products of turnover would span the opening of the annulus during catalysis. The analysis reveals that polymeric linear peptidoglycan substrate threads through the opening of the annulus of the enzyme.

Selected references:

Lee, M; Domínguez-Gil, T; Hesek, D; Mahasenan, KV; Lastochkin, E; Hermoso, JA; Mobashery, S
ACS Chemical Biology (2016) 11, 1525-1531  (doi:10.1021/acschembio.6b00194


PBP2a with antibiotic. Click to enlarge it  
The ability to resist the effect of a wide range of antibiotics makes methicillin-resistant Staphylococcus aureus (MRSA) a leading global human pathogen. A key determinant of resistance to β-lactam antibiotics in this organism is penicillin-binding protein 2a (PBP2a), an enzyme that catalyzes the crosslinking reaction between two adjacent peptide stems during the peptidoglycan biosynthesis. In the face of the clinical challenge posed by resistant bacteria, the present needs for novel classes of antibiotics are genuine. In silico docking and screening, followed by chemical synthesis of a library of quinazolinones, led to the discovery of (E)-3-(3-carboxyphenyl)-2- (4-cyanostyryl)quinazolin-4(3H)-one as an antibiotic effective in vivo against methicillin-resistant Staphylococcus aureus (MRSA). This antibiotic impairs cell-wall biosynthesis as documented by functional and structural assays showing binding of new antibiotic to PBP2a. We document that the antibiotic also inhibits PBP1 of S. aureus, indicating a broad targeting of structurally similar PBPs by this antibiotic. This class of antibiotics holds promise in fighting MRSA infections.

Selected references:

Bouley, R; Kumarasiri, M; Peng, Z; Otero, LH; Song, W; Suckow, MA; Schroeder, VA; Wolter, WR; Lastochkin, E; Antunes, NT; Pi, H; Vakulenko, S; Hermoso, JA; Chang, M; Mobashery, S
Journal of the American Chemical Society (2015) 137, 1738−1741  (doi:10.1021/jacs.5b00056)


PcsB. Click on it to get a larger image
Separation of daughter cells during bacterial cell division requires that the septal cross wall be split by peptidoglycan hydrolases. In Streptococcus pneumoniae an essential protein termed PcsB is predicted to perform this critical operation. Recent evidence shows that the activity of PcsB is regulated by the transmembrane FtsEX complex. In this work the muralytic activity of PcsB is demonstrated for the first time. Furthermore, we report the crystal structure of full-length PcsB showing an unprecedented dimeric structure in which the unique V-shaped coiled-coil domain of each monomer acts as a molecular tweezers locking down the catalytic domain of its dimeric partner in an inactive configuration. This finding strongly suggests that the release of the catalytic domains requires an ATP-driven conformational change in the FtsEX complex, which is most likely conveyed towards the catalytic domains through a set of coordinated movements of the α-helices forming the coiled-coil domain of PcsB.

Selected references:

Bartual, SG; Straume, D; Stamsås, GR; Muñoz, IG; Alfonso, C; Martínez-Ripoll, M; Håvarstein, LS; Hermoso, JA
Nature Communications (2014) 5,  (doi:10.1038/ncomms4842)












Surface-exposed proteins of pathogenic bacteria are considered as potential virulence factors through their direct contribution to host-pathogen interactions. Pneumococci bind human plasminogen (PLG) on the bacterial cell surface to allow pneumococcal cells to disseminate through the epithelial and endothelial layers. We have demonstrated that phosphoglycerate kinase (PGK) from Streptococcus pneumoniae, a cytoplasmic enzyme of the glycolysis, binds plasminogen and is also located on the pneumococcal surface. The high-resolution crystal structure of PGK shows how PGK can recognize PLG and suggested a potential interaction of PGK with tissue-type plasminogen activator (tPA). An interaction confirmed by biophysical methods. Our results provide new insights into the moonlighting functions of host-pathogen interactions displayed by cytoplasmic proteins on the bacterial surface and point to a multifaceted interaction with various fibrinolysis components.

Selected references:

Fulde, M; Bernardo-García, N; Rohde, M; Nachtigall, N; Frank, R; Preissner, KT; Klett, J; Morreale, A; Chhatwal, GS; Hermoso, JA; Bergmann, S
Thrombosis and Haemostasis (2014) 111, 401-416  (doi:10.1160/TH13-05-0421)






Etrx1 & ETrx2

The respiratory pathogen Streptococcus pneumoniae has evolved efficient mechanisms to resist oxidative stress conditions and to displace other bacteria in the nasopharynx. Here we characterize at physiological, functional and structural levels two novel surface-exposed thioredoxin-family lipoproteins, Etrx1 and Etrx2. The impact of both Etrx proteins and their redox partner methionine sulfoxide reductase SpMsrAB2 on pneumococcal pathogenesis was assessed in mouse virulence studies and phagocytosis assays. The results demonstrate that loss of function of either both Etrx proteins or SpMsrAB2 dramatically attenuated pneumococcal virulence in the acute mouse pneumonia model and that Etrx proteins compensate each other. The deficiency of Etrx proteins or SpMsrAB2 further enhanced bacterial uptake by macrophages, and accelerated pneumococcal killing by H2O2 or free methionine sulfoxides (MetSO). Moreover, the absence of both Etrx redox pathways provokes an accumulation of oxidized SpMsrAB2 in vivo. Taken together our results reveal insights into the role of two extracellular electron pathways required for reduction of SpMsrAB2 and surface-exposed MetSO. Identification of this system and its target proteins paves the way for the design of novel antimicrobials.

Selected references:

Saleh, M; Bartual, SG; Abdullah, MR; Jensch, I; Asmat, TM; Petruschka, L; Pribyl, T; Hermoso, JA; Hammerschmidt, S
EMBO Molecular Medicine (2013) 5, 1852-1870  (doi:10.1002/emmm.201202435)








PBP2a. Click on it to get a larger image The expression of penicillin binding protein 2a (PBP2a) is the basis for the broad clinical resistance to the β-lactam antibiotics by methicillin-resistant Staphylococcus aureus (MRSA). The highmolecular mass penicillin binding proteins of bacteria catalyze in separate domains the transglycosylase and transpeptidase activities required for the biosynthesis of the peptidoglycan polymer that comprises the bacterial cell wall. In bacteria susceptible to β-lactam antibiotics, the transpeptidase activity of their penicillin binding proteins (PBPs) is lost as a result of irreversible acylation of an active site serine by the β-lactam antibiotics. In contrast, the PBP2a of MRSA is resistant to β-lactamacylation and successfully catalyzes the DD-transpeptidation reaction necessary to complete the cell wall. The inability to contain MRSA infection with β-lactam antibiotics is a continuing public health concern. We report herein the identification of an allosteric binding domain (a remarkable 60 Å distant from the DD-transpeptidase active site) discovered by crystallographic analysis of a soluble construct of PBP2a. When this allosteric site is occupied, a multiresidue conformational change culminates in the opening of the active site to permit substrate entry. This same crystallographic analysis also reveals the identity of three allosteric ligands: muramic acid (a saccharide component of the peptidoglycan), the cell Wall peptidoglycan, and ceftaroline, a recently approved anti-MRSA β-lactam antibiotic. The ability of an anti-MRSA β-lactam antibiotic to stimulate allosteric opening of the active site, thus predisposing PBP2a to inactivation by a second β-lactam molecule, opens an unprecedented realm for β-lactam antibiotic structure-based design.

Selected references:

Otero, LH; Rojas-Altuve, A; Llarrull, LI; Carrasco-López, C; Kumarasiri, M; Lastochkin, E; Fishovitz, J; Dawley, M; Hesek, D; Lee, M; Johnson, JW; Fisher, JF;  Chang, M; Mobashery, S; Hermoso, JA
Proceedings of the National Academy of Sciences (2013) 110, 16808-16813  (doi:10.1073/pnas.1300118110)

Jennifer Fishovitz, J; Rojas-Altuve, A; Otero, LH; Dawley, M; Carrasco-López, C; Chang, M; Hermoso, JA; Mobashery, S
Journal of the American Chemical Society (2014) 136, 9814–9817  (doi:10.1021/ja5030657)


ampdh3 Bacterial cell wall is a polymer of considerable complexity that is in constant equilibrium between synthesis and recycling. AmpDh3 is a periplasmic zinc protease of Pseudomonas aeruginosa, which is intimately involved in cell-wall remodeling. In this report we document the reactions that this enzyme performs on the cell wall, which hydrolyze the peptide stems from the peptidoglycan, the major constituent of the cell wall. We document that the majority of the reactions of this enzyme takes place on the polymeric insoluble portion of the cell wall, as opposed to the fraction that is released from it. We show that AmpDh3 is tetrameric both in crystals and in solution. Based on the X-ray structures of the enzyme in complex with two synthetic cell-wall-based ligands, we present for the first time a model for a multivalent anchoring of AmpDh3 onto the cell wall, which lends itself to its processive remodeling.

Selected references:

Lee, M; Artola-Recolons, C; Carrasco-López, C; Martínez-Caballero, S; Hesek, D; Spink, E; Lastochkin, E; Zhang, W; Hellman, L; Boggess, B; Hermoso, J; Mobashery, S
Journal of the American Chemical Society (2013) 135, 12604-12607  (doi:10.1021/ja407445x)





 
AmpDh2. Click on it to get a larger image The zinc protease AmpDh2 is a virulence determinant of Pseudomonas aeruginosa, a problematic human pathogen. The mechanism of how the protease manifests virulence is not known, but it is known that it turns over the bacterial cell wall. The reaction of AmpDh2 with the cell wall was investigated and nine distinct turnover products were characterized by LC/MS/MS. The enzyme turns over both the crosslinked and non-crosslinked cell wall. Three high-resolution X-ray structures, of the apo enzyme and of two complexes with turnover products, were solved. The X-ray structures show how the dimeric protein interacts with the inner leaflet of the bacterial outer membrane and that the two monomers provide a more expansive surface for recognition of the cell wall. This binding surface can accommodate the three-dimensional solution structure of the crosslinked cell wall.

Selected references:

Martínez-Caballero, S; Lee, M; Artola-Recolons, C; Carrasco-López, C; Hesek, D; Spink, EE; Lastochkin, E; Zhang, W; Hellman, LM; Boggess, B; Mobashery, S; Hermoso, JA
Journal of the American Chemical Society (2013) 135, 10318−10321  (doi:10.1021/ja405464b)
 

AmpD. Cllick on the image to see the activation mechanism
AmpD is a cytoplasmic peptidoglycan amidase involved in bacterial cell wall recycling and in the induction process of class C β-lactamases. Crystal structures of AmpD revealed, for the first time, the presence of an open/active and a closed/inactive conformation. The activation mechanism involves large structural rearrangements (17 Å movement) in one third of the entire protein. This activation mechanism might be representative of a regulatory process for other intracellular members of the bacterial amidase_2 family of enzymes.

Click on the image (or on this link) to see a movie showing the whole activation mechanism.

Selected references:

Carrasco-López, C; Rojas-Altuve, A; Zhang, W; Hesek, D; Lee; M; Barbe, S; André, I; Ferrer, P; Silva-Martin, N; R. Castro, G; Martinez-Ripoll, M; Mobashery, S;  Hermoso, JA
Journal of Biological Chemistry (2011) 286, 31714-31722 (doi:10.1074/jbc.M111.264366)



See in detail the rndolytic transglycosilase MltE
The crystal structure of the first endolytic peptidoglycan lytic transglycosylase MltE from Escherichia coli is reported herein. The degradative activity of this enzyme initiates the process of cell wall recycling, which is an integral event in the bacterial existence. The structure sheds light on how MltE recognizes its substrate, the cell wall peptidoglycan. It also explains the ability of this endolytic enzyme to cleave in the middle of the peptidoglycan chains. Furthermore, the structure reveals how the enzyme is sequestered on the inner leaflet of the outer membrane.

Selected references:

Artola-Recolons, C; Carrasco-López, C; Llarrull, L; Kumarasiri, M; Lastochkin, E; Martínez de Ilarduya, I; Meindl, K; Usón, I; Mobashery, S; Hermoso, JA
B
iochemistry (2011) 50, 2384-2386 (doi:10.1021/bi200085y)

Artola-Recolons, C; Llarrull, L; Lastochkin, E; Mobashery, S; Hermoso, JA
Acta Crystallographica (2011) F67, 161-163 (doi:10.1107/S1744309110049171)


 
LytC. See a movie!
The first structure of a pneumococcal autolysin, that of LytC, has been solved in ternary complex with choline and a pneumococcal peptidoglycan fragment. The active site of the hydrolase module is not fully exposed but oriented towards the choline-binding module accounting for its unique in vivo features in peptidoglycan hydrolysis, its activation and its regulatory mechanisms. Due to the unusual hook-shaped conformation of the multimodular protein, it is only able to hydrolyze non-crosslinked peptidoglycan chains, an assertion validated by additional experiments. These results explain the activation of LytC by CbpD in fratricide, a competence-programmed mechanism of predation of noncompetent sister cells. The results provide the first structural insights into the critical and central function that LytC plays in pneumococcal virulence and explain a long-standing puzzle of how murein hydrolases can be controlled to avoid self-lysis during bacterial growth and division.

Enjoy a short movie through this link, explaining how CbpD activates LytC in fratricide...

Following this other link you can also see a longer video, illustrating two aspects on the pneumococcal virulence, as based on two articles concerning the structure and function of some pneumococcal enzymes.

Selected references:

Pérez-Dorado, I; González, A; Morales, M; Sanles, R; Striker, W; Vollmer, W; Mobashery, S; García, JL; Martínez-Ripoll, M; García, P; Hermoso, JA
Nature Structural & Molecular Biology (2010) 17, 576-582 (doi:10.1038/nsmb.1817)

Pérez-Dorado, I; Sanles, R; González, A; García, P; García, JL; Martínez-Ripoll, M; Hermoso, JA
Acta Crystallographica (2010) F66, 448-451 (doi:10.1107/S1744309110006081)


cbpf


Pneumococcal surface proteins are the major pool of virulence factors and represent key players in pneumococcal adhesion, colonisation and virulence. Both the three-dimensional structure and the function of choline-binding protein F (CbpF), one of the most abundant proteins in the pneumococcal cell wall, are now reported. While its C-terminal module is involved in cell wall binding, the N-terminal module is critical for inhibition of the autolytic LytC muramidase, providing a regulatory function for pneumococcal autolysis with relevant implications in pivotal processes such as competence and allolysis.

Selected references:

Silva-Martín, N; Retamosa. G; Maestro, B; Bartual, SG; Rodes, MJ; García, P; Sanz, JM; Hermoso, JA
Biochimica et Biophysica Acta - General Subjects (2014) 1840, 129-135  (doi:10.1016/j.bbagen.2013.09.006)

Molina, R; González, A; Stelter, M; Pérez-Dorado, I; Kahn, R; Morales, M; Campuzano, S; Campillo, NE; Mobashery, S; García, JL; García P; Hermoso, JA
EMBO Reports (2009) 10, 246-251 (doi:10.1038/embor.2008.245)

Molina, R; González, A; Moscoso, M; García, P; Stelter, M; Kahn, R; Hermoso, JA
Acta Crystallographica (2007) F63, 742-745
(doi:10.1107/S1744309107035865)








The active site of Pce
Pce. See also the movie!



The crystal structure of the pneumococcal phosphorylcholine esterase, Pce (602 amino acids), revelaed Pce could selectively modify the distribution of the phosphoryl choline moieties on the bacterial surface. Thus Pce should impair the ability of human defense system to efficiently bind the bacteria, and would provide a mechanism for pneumococci escaping the immune attack.

Besides, we have verified the ability of Pce to hydrolyze PAF (human platelet-activating factor) a pivotal first messenger of the inflammatory processes suggesting that this enzyme has other functions during infection. This finding opens a new scenario on the role that Pce may play in the mechanism of pneumococcal adherence and invasiveness.

Enjoy a short movie through this link, explaining the role of Pce in pneumococcal camouflage...

Following this other  link you can also see a longer video, illustrating two aspects on the pneumococcal virulence, as based on two articles concerning the structure and function of some pneumococcal enzymes.

Selected references:

Hermoso, J; Lagartera, L; Gonzalez, A; Stelter, M; Garcia, P; Martinez-Ripoll, M; Garcia, JL; Menendez, M

Nature Structural and Molecular Biology (2005) 12, 533-538  [PDF-copy]

Lagartera, L; González, A; Hermoso, JA; Saíz, JL, García, P; García, JL; Menéndez, M
Protein Science (2005), 14, 3013-3024


Lagartera, L; Gonzalez, A; Stelter, M; Garcia, P; Garcia, JL; Menendez, M; Kahn, R; Hermoso, JA

Acta Crystallographica (2005) F61, 221-224











Cpl-1
Cpl-1
Cpl-1
The bactericidal activity of bacteriophages has been used to treat human infections for years as an alternative or a complement to antibiotic therapy. Nowadays, endolysins (phage-encoded enzymes that break down bacterial peptidoglycan at the terminal stage of the phage reproduction cycle) have been used successfully to control antibiotic-resistant pathogenic bacteria in animal models (enzybiotics). Their cell wall binding domains target the enzymes to their substrate, and their corresponding catalytic domains are able to cleave bonds in the peptidoglycan network. The first insight on this structural knowledge has been very recently provided by the X-ray crystal structures of the Cpl-1 lysozyme in complex with three bacterial cell wall PG analogues. These findings provide the first structural evidence on recognition of the peptidoglycan and shed light on the discrete events of cell wall degradation by Cpl-1.


Selected references:

Hermoso, JA; García, JL; García, P
Current Opinion in Microbiology (2007) 10(5), 461-472

Pérez-Dorado, I; Campillo, NE; Monterroso, B; Hesek, D; Lee, M; Páez, JA; García, P; Martínez-Ripoll, M; García, JL; Mobashery, S; Menéndez, M; Hermoso, JA
Journal of Biological Chemistry (2007) 282, 24990-24999

Buey, RM; Monterroso, B; Menéndez, M; Diakun, G; Chacón, P; Hermoso, JA; Díaz, JF
J. Mol. Biol. (2007) 365, 411-424

Hermoso, JA; Monterroso, B; Albert, A; Galán, B; Ahrazem, O; García, P; Martínez-Ripoll, M; García, JL; Menéndez, M.
Structure (2003), 11, 1239-1249  [PDF-copy]

Monterroso, B; Albert, A; Martínez-Ripoll, M; García, P; García, JL; Menéndez, M; Hermoso, JA
Acta Crystallographica (2002) D58, 1487-1489  [PDF-copy]


[Further Information]

Structural Biology of Carbohydrate Active Enzymes
Project Leader: Julia Sanz-Aparicio
 
The carbohydrate active enzymes catalyse the synthesis and breakdown of glycosidic bonds in carbohydrates that are in the form of glycoproteins, glycolipids and polysaccharides. This wide group of enzymes accounts for 1-3 % of the proteins encoded by genomes of most organisms, and are essential in a wide variety of biological processes ranging from energy storage and utilization to highly specific signalling roles. Structural studies of these enzymes and their complexes with substrate analogues and inhibitors reveal structural details that correlate with mechanism and give valuable information that helps us to understand their function at the molecular level.
 
GH3. Click on it to get a larger image
 
XdINV. Click on it to get a larger image

CBM. Click on it to get a larger image 
Xyn30D. Click to get a larger image
 
Saccharomyces invertase. Click on the image to get a larger view
FOS - see a bigger imagesee a bigger image of the b-galactosidase Invertase. See a bigger image
bgla
xynB
ss-bgly


Our work has focused on bacterial glycosidases involved in the degradation of small olligosaccharides  and also in the cleavage of the more complex plant cell wal polysacharide xylan. Some of these enzymes are modular comprising catalytic modules appended to one or more accesory domains that promote substrate binding. Our aim is to have a deep insight into the machinery involved in specificity and the improvement of their stability has also been pursued by structure-based protein engineering.


Recent work has started on yeast β-fructofuranosidases (invertases), involved in the preparation of prebiotic oligosacharides (functional foods), and β-galactosidases (lactases) and α-galactosidases from different eukaryote organisms. The structural analysis of these enzymes provides the molecular basis to improve their properties such as glycosylating activity, stability and catalytic efficiency, which is most interesting for biotechnological purposes. Furthermore, it gives a deeper insight into the structural features that rule modularity, a pivotal property within glycosidases crucial to many biologically relevant processes.


Selected references:

Rico-Díaz, A; Ramírez-Escudero, M; Vizoso-Vázquez, A; Cerdán, M.E; Becerra, M; Sanz-Aparicio, J
The FEBS Journal (2017) 284, 1815–1829  (doi:10.1111/febs.14083)


Ramírez-Escudero, M; del Pozo, MV; Marín-Navarro, J; González, B; Golyshin, PN; Polaina, J; Ferrer, M; Sanz-Aparicio, J
Journal of Biological Chemistry (2016) 291, 24200-24214  (doi:10.1074/jbc.M116.747527)

Ramírez-Escudero, M; Gimeno-Pérez, M; González, B; Linde, D; Merzdo, Z; Fernández-Lobato, M; Sanz-Aparicio, J
Journal of Biological Chemistry (2016) 291, 6843-6857  (doi:10.1074/jbc.M115.708495)

Gutiérrez-Alonso, P; Gimeno-Pérez, M; Ramírez-Escudero, M; Plou, FJ; Sanz-Aparicio, J; Fernández-Lobato, M
Applied Microbiology and Biotechnology (2015) 100, 3125-3135  (doi:10.1007/s00253-015-7171-3)

Sainz-Polo, MA;  González, B; Menéndez, M; Pastor, FJ; Sanz-Aparicio, J
Journal of Biological Chemistry (2015) First published in May 22  (doi:10.1074/jbc.M115.659300)

Sainz-Polo, MA; Valenzuela, S; González-Pérez, B; Pastor, FJ; Sanz-Aparicio, J
Journal of Biological Chemistry (2014) 289,  31088-31101  (doi: 10.1074/jbc.M114.597732)

de Abreu, M; Alvaro-Benito, M; Sanz-Aparicio, J; Plou, FJ; Fernandez-Lobato, M; Alcalde, M
Advanced Synthesis & Catalysis (2013) 
355, 1698–1702  (doi:10.1002/adsc.201200769)

Sainz-Polo, MA; Ramírez-Escudero, M; Lafraya, A; González, B; Marín-Navarro, J; Polaina, J; Sanz-Aparicio, J
Journal of Biological Chemistry (2013) 288, 9755-9766  (doi:10.1074/jbc.M112.446435)


Álvaro-Benito, M; Sainz-Polo, M Ángela; González-Pérez, D; González, B; Plou, Francisco J; Fernández-Lobato, M; Sanz-Aparicio, J
Journal of Biological Chemistry (2012) 287, 19674-19686  (doi:10.1074/jbc.M112.355503)

Pereira-Rodríguez, A; Fernández-Leiro, R; González-Siso, MI; Esperanza Cerdán, M; Becerra, M; Sanz-Aparicio, J
Journal of Structural Biology 
(2012) 177, 392–401  (doi:10.1016/j.jsb.2011.11.031)

Lafraya, A; Sanz-Aparicio, J, Polaina, J; Marín-Navarro, J 
Applied Environmental Microbiology (2011) 77, 6148-6157 (doi:10.1128/AEM.05032-11)

Alvaro-Benito, M; Abreu, M; Portillo, F; Sanz-Aparicio, J; Fernández-Lobato, M
Applied Environmental Microbiology (2010) 76, 7491-7499 (doi:10.1128/AEM.01614-10)
 

Polo, A; Linde, D; Estévez, M; Fernández-Lobato, M; Sanz-Aparicio, J
Acta Crystallographica (2010) F66, 1441-1444 (doi:10.1107/S1744309110029192)


Fernández-Leiro, R; Pereira-Rodríguez, A; Esperanza Cerdán, M; Becerra, M; Sanz-Aparicio, J
Journal of Biological Chemistry (2010) 285, 28020-28033 (doi:10.1074/jbc.M110.144584)

Alvaro-Benito, M; Polo, A; González, B; Fernández-Lobato, M; Sanz-Aparicio, J
Journal of Biological Chemistry (2010) 285, 13930-13941 (doi:10.1074/jbc.M109.095430)

Gallardo, O; Pastor, FJ; Polaina, J; Díaz, P;Vogel, P; Isorna, P; González-Pérez, B; Sanz-Aparicio, J
Journal of Biological Chemistry (2010) 22, 2721-2733  (doi:10.1074/jbc.M109.064394)

Pereira-Rodríguez, A; Fernández-Leiro, R; González-Siso, M; Cerdán, E; Becerra, M; Sanz-Aparicio, J 
Acta Crystallographica (2010) F66, 297-300 (doi:10.1107/S1744309109054931)

Fernández-Leiro, F; Pereira, A; Cedán, E; Becerra-Fernández, M; Sanz-Aparicio, J                       
Acta Crystallographica (2010)  F66, 44-47 (doi:10.1107/S1744309109047794)

Polo-Rivas, A; Alvaro-Benito, A; Fernández-Lobato, M; Sanz-Aparicio, J
Acta Crystallographica (2009) F65, 1162-1165  (doi:10.1107/S174430910903938)

Pastor, FJ; Gallardo, O; Sanz-Aparicio, J; Díaz, P

in Industrial Enzymes: Structure, Function and Applications (2007), Chpt. 5, 65-82, Springer NL, Polaina, J;  MacCabe, Andrew P (Eds.),  XII, 642 p., Hardcover. ISBN: 978-1-4020-5376-4

León, M; Isorna, P; Menéndez, M;  Sanz-Aparicio J; Polaina, J
Protein Journal (2007)  26, 435-444

Isorna, P; Polaina, J; Latorre-García. L; Cañada, FJ; González, B; Sanz-Aparicio, J
Journal of Molecular Biology (2007) 371, 1204-1218

González-Blasco,G; Sanz-Aparicio,J; González-Pérez,B; Hermoso,JA; Polaina,J 
Journal of Biological Chemistry (2000), 275, 13708-13712

Sanz-Aparicio, J; Hermoso, J; Martínez-Ripoll, M; Lequerica, JL; Polaina, J 
Journal of Molecular Biology (1998), 275, 491-502  [PDF-copy]

Sanz-Aparicio, J; Hermoso, JA; Martínez-Ripoll, M; González-Pérez, B; Lopez-Camacho, C; Polaina, J 
Proteins: Structure, Function and Genetics (1998), 33, 567-576

Sanz-Aparicio, J; Romero, A; Martinez-Ripoll, M; Madarro, M; Flors, A; Polaina, J
Journal of Molecular Biology (1994), 240, 267-270  [PDF-copy]



Polyol dehydrogenases
Project Leader: Jose M. Mancheño
 
GPDH. Click on it to get a larger image Enantioselective oxidation of galactitol 1-phosphate by galactitol-1-phosphate 5-dehydrogenase from Escherichia coli

Galactitol-1-phosphate 5-dehydrogenase (GPDH) is a polyol dehydrogenase that belongs to the medium chain dehydrogenase/reductase superfamily (MDR). It catalyses the Zn2+ and NAD+-dependent stereoselective dehydrogenation of L-galactitol-1-phosphate to D-tagatose-6-phosphate. Here, we report three crystal structures of GPDH from Escherichia coli: the open state of GPDH with Zn2+ in the catalytic site and also those of the closed state in complex with the polyols Tris and glycerol, respectively. The closed state of GPDH reveals no cofactor bound, which is at variance with the conformational transition of the prototypical mammalian liver alcohol dehydrogenase. The main intersubunit-contacting interface within the GPDH homo-dimer presents a large internal cavity that probably facilitates the relative movement between the subunits. The substrate analogue glycerol bound within the active site partially mimics the catalytically relevant backbone of galactitol-1-phosphate. The glycerol binding mode reveals, for the first time in the polyol dehydrogenases, a penta-coordinated zinc ion in complex with a polyol and also a strong hydrogen bond between the primary hydroxyl group and the conserved Glu144, an interaction originally proposed more than thirty years ago that supports a catalytic role for this acidic residue.

Selected references:

Benavente, R; Esteban-Torres, M; Kohring, G-W; Cortés-Cabrera, A; Sánchez-Murcia, PA; Gago, F; Acebrón, I; de las Rivas, B; Muñoz, R; Mancheño, JM
Acta Crystallographica (2015) D71, 1540-1554   
(doi: 10.1107/S1399004715009281)



Enzymes from Lactic Acid Bacteria
Project Leader: Jose M. Mancheño
 
LpEst1. Click on it to get a larger image LpEst1, a new topological variant within the α/β hydrolase superfamily and a novel dimeric assembly

The genome of the lactic acid bacterium Lactobacillus plantarum WCFS1 reveals the presence of a rich repertoire of esterases and lipases highlighting their important role in cellular metabolism. Among them is the carboxylesterase LpEst1 a bacterial enzyme related to the mammalian hormone-sensitive lipase, which is known to play a central role in energy homeostasis. In this study, the crystal structure of LpEst1 has been determined at 2.05 Å resolution; it exhibits an α-β-hydrolase fold, consisting of a central β-sheet surrounded by α-helices, endowed with novel topological features. The structure reveals a dimeric assembly not comparable with any other enzyme from the bacterial hormone-sensitive lipase family, probably echoing the specific structural features of the participating subunits. Biophysical studies including analytical gel filtration and ultracentrifugation support the dimeric nature of LpEst1. Structural and mutational analyses of the substrate-binding pocket and active site together with biochemical studies provided insights for understanding the substrate profile of LpEst1 and suggested for the first time the conserved Asp173, which is adjacent to the nucleophile, as a key element in the stabilization of the loop where the oxyanion hole resides.

Selected references:

Alvarez, Y; Esteban-Torres, M; Cortés-Cabrera, A; Gago, F; Acebrón, I; Benavente, R; Mardo, K; de las Rivas, B; Muñoz, R; Mancheño, JM
PLoS ONE (2014) 9: e92257  
(doi:10.1371/journal.pone.0092257)


Cest-2923. Click on it to see an enlarged image Pleomorphic behaviour of carboxyl esterase Cest-2923
 
The α/β hydrolase fold is one of the most versatile structures in the protein realm according to the diversity of sequences adopting such a three dimensional architecture. We found that the versatility of a canonical  α/β-hydrolase fold, particularly that of the carboxylesterase Cest-2923 from the lactic acid bacterium Lactobacillus plantarum WCFS1, also extends to its oligomeric behavior in solution. Thus, we discovered that Cest-2923 exhibits a pH-dependent pleomorphic behaviour in solution involving monomers, canonical dimers and tetramers. Whereas at neutral pH the system is mainly shifted to dimeric species, at acidic conditions tetrameric species predominate. Interestingly, despite that these tetramers result from the association of canonical dimers, as commonly found in many other carboxylesterases from the hormone-sensitive lipase family, they can be defined as “non canonical” since they represent a different association mode. Interestingly, the observed associative behaviour is consistent with different crystallographic results of Cest-2923 from structural genomics consortia. Finally, we benefit from the presence of sulphate or acetate molecules (depending on the crystal form analysed) in the close vicinity of the nucleophile Ser116, to identify interactions with the putative oxyanion hole and also to deduce the existence of hydrolytic activity within Cest-2923 crystals.

Selected references:

Benavente, R; Esteban-Torres, M; Acebrón, I; de Las Rivas, B; Muñoz, R; Alvarez, Y; Mancheño, JM.
The FEBS Journal (2013) 280, 6658–6671  (doi:10.1111/febs.12569)


 
decarboxylase Catalytic mechanism of p-coumaric acid decarboxylase from Lactobacillus plantarum

The p-coumaric acid decarboxylase from the lactic acid bacterium Lactobacillus plantarum has an internal amphipathic cavity in which the active site is located. Combining crystallographic, molecular biology, and biochemical studies a novel catalytic mechanism of decarboxylation has been proposed together with revealing the existence of conformational changes associated with the catalysis. These results envisage new biotechnological applications for this family of enzymes.

Selected references:

Rodríguez, H; Angulo, I; de las Rivas, B; Campillo, N; Páez, JA; Muñoz, R; Mancheño, JM
Proteins: Structure, Function, and Bioinformatics (2009) 78, 1662-1676 (doi:10.1002/prot.22684)

Rodriguez, H; Curiel, JA; Landete, JM; de las Rivas, B; López de Felipe, F; Gómez-Cordovés, C; Mancheño, JM; Muñoz, R
International Journal of Food Microbiology (2009) 132, 79-90  (doi:10.1016/j.ijfoodmicro.2009.03.025)


Rodríguez, H; Landete, JM; Curiel, JA; de Las Rivas, B; Mancheño, JM; Muñoz, R
J. Agric. Food Chem. (2008) 56(9), 3068-3072 (doi:10.1021/jf703779s)


Rodríguez, H; de las Rivas, B; Muñoz, R; Mancheño, JM
Acta Crystallographica (2007) F63, 300-303 (doi:10.1107/S1744309107008846)


Ornithine transcarbamylase Catabolic ornithine transcarbamylase from Lactobacillus hilgardii

Ornithine transcarbamylases (OTCs) are oligomeric enzymes involved in the metabolism of the amino acid arginine. The structural analyses of catabolic OTC from Lactobacillus hilgardii have revealed a new oligomeric state (hexamer) within the family of ornithine transcarbamylases, and also the presence of a metal binding-site.

Selected references:

de Las Rivas, B; Fox, GC; Angulo, I; Martinez-Ripoll, M; Rodríguez, H; Muñoz, R; Mancheño, JM
Journal of Molecular Biology (2009) 393, 425-434  (doi:10.1016/j.jmb.2009.08.002)

de Las Rivas, B; Rodríguez, H; Angulo, I; Muñoz, R; Mancheño, JM
Acta Crystallographica (2007) F63, 563-567 (doi:10.1107/S1744309107025195)



Other projects


Structural and Biotechnological Characterization of Lipases  (read more...)
Project Leader: Juan A. Hermoso
 
The lipolytic enzymes belong to a large family of enzymes that facilitate the degradation of lipids. Lipases are members of this family that we have investigated extensively. Lipolytic enzymes are water-soluble enzymes that are characterized by their ability to hydrolize aggregated lipids with a much higher velocity than the same lipid in its monomolecular form. Our work aims structural characterization of different lipases, their activation mechanism and their biotechnological applications.
btl2
Activation Mechanism of Bacterial Thermoalkalophilic Lipases

The bacterial thermoalkalophilic lipases hydrolyze saturated fatty acids at 60–75 °C and pH 8–10
. The crystal structure of the lipase from Geobacillus thermocatenulatus, shows that enzyme activation involves large structural rearrangements of around 70 amino acids and the concerted movement of two lids. The movements are stabilized by a Zn2+ binding domain, which is characteristic of this family of lipases. Two detergent molecules are placed in the active site, mimicking chains of the triglyceride substrate, demonstrating the position of the oxyanion hole and the three pockets that accommodate the sn-1, sn-2 and sn-3 fatty acids chains. The combination of structural and biochemical studies indicate that the lids opening is not mediated by temperature but triggered by interaction with lipid substrate. This opening implies dramatic structural rearrangements that can be seen through this link.

Selected references:

Carrasco-López, C; Godoy, C; de las Rivas, B; Fernandez-Lorente, G; Palomo, JM; Guisán, JM; Fernández-Lafuente, R; Martínez-Ripoll, M; Hermoso, JA
Journal of Biological Chemistry (2009) 284, 4365-4372 (doi:10.1074/jbc.M808268200)


An esterase from Thermus thermophilus HB27
rol


Biotechnological Applications of Lipases



Selected references
:

Fuciños, P; Pastrana, L; Sanromán, A; Longo, MA; Hermoso, JA; Rúa ML
Journal of Molecular Catalysis B: Enzymatic (2011) 70, 127-137 (doi:10.1016/j.molcatb.2011.02.017)

Di Lorenzo, M; Hidalgo, A; Molina, R;  Hermoso, JA; Greco, G; Bornscheuer, UT
Applied and Environmental Microbiology. (2007) 73(22), 7291-7299

Palomo, JM; Fernández-Lorente, G; Ortiz, C; Segura, RL; Mateo, C; Fuentes, M; Hermoso, JA; Fernández-Lafuente, R; Guisán, JM
Medicinal Chemistry Reviews-Online (2005) 2(5), 369-378 (doi:10.2174/156720305774330494)










lp3
Degradation Mechanism of Plant Cell Walls Enzymes

As a component of the array of enzymes produced by micro-organisms to deconstruct plant cell walls, feruloyl esterases hydrolyze phenolic groups involved in the cross-linking of arabinoxylan to other polymeric structures. This is important for opening up the cell wall structure, making material more accesible to glycosyl hydrolases. Here we describe the first crystal structure of the non-modular type-A feruloyl esterase from Aspergillus niger (AnFAeA) solved at 2.5 A resolution. AnFaeA displays an alpha/beta hydrolase fold similar that found in fungal lipases and different to that reported for other feruloyl esterases.

Selected references:

Faulds, C; Molina, R; Gonzalez, R; Husband, F; Juge, N; Sanz-Aparicio, J; Hermoso, JA
FEBS Journal. (2005), 272, 4362-4371


Hermoso, JA; Sanz-Aparicio, J; Molina, R; Juge, N; Gonzalez, R; Faulds, C

Journal of Molecular Biology (2004) 338, 495-506


lp2

Activation Mechanism of Candida rugosa Lipases

The crystal structure of the closed state of the Candida rugosa lipase 2 has permited us to achieve a comprehensive structural comparison among members of this family of enzymes, which has yielded clues defining their lipase/esterase character.


Selected references
:


Otero, C; Fernández, M; Hermoso, JA; Martínez-Ripoll, M
Journal of Molecular Catalysis B: Enzymatic, (2005). 32, 225-229

Mancheño, JM; Pernas, MA; Martínez, MJ; Ochoa, B; Rúa, ML; and Hermoso, JA

Acta Crystallographica (2003) D59, 499-501

Mancheño, JM; Pernas, MA; Martínez, MJ; Ochoa, B; Rúa, ML; Hermoso, JA
Journal of Molecular Biology (2003) 332, 1059-1069


lip-col-micelle
lipase-colipase
Activation Mechanism and Hydrolitic Machinery of Pancreatic Lipases

Enzymes, such as Pancreatic Lipases, are the key enzymes in the absorption of dietary fats. The three dimensional structure of the Lipase-Colipase complex, pictured here, and the neutron crystal structure of the Lipase-Colipase-Micelle complex revealed new insights on the activation mechanisms of these enzymes.

Selected references:

Pignol, D; Ayvazian, L; Kerfelec, B; Timmins, P; Crenon, I; Hermoso, JA; Fontecilla-Camps, J; Chapus, C
Journal of Biological Chemistry (2000) 275, 4220-4224  [Abstract]  [PDF-copy]
 
Pignol, D; Hermoso, JA; Kerfelec, B; Crenon, I; Chapus, C; Fontecilla-Camps, J
Chem. and Phys. of Lipids (1998), 93, 123-129  [Abstract]

Ayvazian, L; Crenon, I; Hermoso, JA; Pignol, D; Chapus, C; Kerfelec, B
Journal of Biological Chemistry (1998) 273, 33604-33609   [Abstract]  [PDF-copy]

Crenon, I; Jayne, S; Kerfelec, B; Hermoso, JA; Pignol, D; Chapus, C
Biochemical and Biophysical Research Communications (1998) 246(2), 513-517  [Abstract]

Crenon, I; Flogizzo, E; Kerfelec, B; Virine, A; Pignol, D; Hermoso, JA; Bonicel, J; Chapus, C
Protein Engineering (1998) 11, 135-142  [Abstract]

Hermoso, JA; Pignol, D; Penel, S; Roth, M; Chapus, C; Fontecilla-Camps, J
EMBO Journal (1997) 16, 5531-553   [Abstract]  [PDF-copy]

Hermoso, JA; Pignol, D; Kerfelec, B; Crenon, I; Chapus, C; Fontecilla-Camps, J
Journal of Biological Chemistry (1996) 271, 18007-18016  [Abstract] [PDF-copy]

[Further Information]

Electron Transfer Proteins    (read more...)
Project Leader: Juan A. Hermoso
FADS. Click to get a larger image
Insights into Sequential Catalysis of FAD Synthetase in Prokaryotes

The crystal structure of the modular FAD synthetase (FADS) has been solved at 1.95 Å resolution. The FADS structure presents two catalytic modules, a C-terminal with ATP:riboflavinkinase activity and a N-terminal with ATP:FMN adenylyltransferase activity, responsible of the synthesis of FAD from riboflavin in two sequential steps. Crystallographic and biophysical studies revealed a hexameric assembly formed by the interaction of two trimers involved in regulation of the catalytic efficiency of the modular enzyme.

Selected references:

Herguedas, B; Martínez-Júlvez, M; Frago, S; Medina, M; Hermoso, JA
Journal of Molecular Biology (2010) 400, 218–230  (doi:10.1016/j.jmb.2010.05.018)


fpr
fpr

Electron Transfer and Catalytic Mechanisms in FPR reductase and NifF flavodoxin from Rhodobacter capsulatus

Selected references
:


Goñi, G.; Herguedas, B; Hervás, M.; Peregrina, JR;  De la Rosa, MA; Gómez-Moreno, C; Navarro, JA; Hermoso,  JA; Martínez-Júlvez, M; Medina, M
Biochimica et Biophysica Acta (2009) 1787, 144–154 
(doi:10.1016/j.bbabio.2008.12.006)

Pérez-Dorado, I; Hermoso, JA; Goñi, G; Medina, M; Bortolotti, A; Carrillo, N; Cortez, N
in Flavins and Flavoproteins (2008), Frago, S; Gómez-Moreno, C; Medina, M; Eds., pp. 267-273, ISBN: 978-84-7733-017-2


Pérez-Dorado, I; Bortolotti, A; Cortez, N; Hermoso, JA
in Flavins and Flavoproteins (2008). 
Frago, S; Gómez-Moreno, C; Medina, M; Eds., pp. 261-267, ISBN: 978-84-7733-017-2

Pérez-Dorado, I; Bortolotti, A; Cortez, N; Hermoso, JA
Acta Crystallographica (2008) F64, 375-377


Nogués, I; Pérez-Dorado, I; Frago, S; Bittel, C; Mayhew, SG; Gómez-Moreno, C; Hermoso, JA; Medina, M; Cortez, N; Carrillo, N
Biochemistry (2005) 44, 11730-11740


Pérez-Dorado, I; Bittel, C; Cortez, N; Hermoso, JA
Acta Crystallographica (2004) D60, 2332-2335


hb
Cofactor Binding in Helicobacter  pylori Flavodoxin


Selected references
:

Martínez-Júlvez, M; Cremades, N; Bueno, M; Pérez-Dorado, I; Maya, C; Cuesta-López, S; Prada, D; Falo, F; Hermoso, JA; Sancho, J
Proteins: Structure, Function and Bioinformatics (2007) 69, 581-594





niff

FMN binding and Oxido-Reduction properties in Anabaena Flavodoxin


Selected references
:

Frago, S; Goñi, G; Herguedas, B; Peregrina, JR; Serrano, A; Perez-Dorado, I; Molina, R; Gómez-Moreno, C; Hermoso, JA; Martínez-Júlvez, M; Mayhew, SG; Medina, M
Archives of Biochemistry and Biophysics (2007) 467, 206-217




psbq
Extrinsic Proteins of Photosystem II

We report the high resolution structure of the spinach PsbQ protein, one of the main extrinsic proteins of higher plant photosystem II (PSII). The crystal structure shows that there are two well defined regions in PSbQ, the C-terminal region (residues 46-149) folded as a four-helical up-down bundle and the N-terminal region (residues 1-45) that is losely packed. This structure provides, for the first time, insights into the crucial N-terminal region. First, two parallel beta-strands cross spatially, joining the beginning and the end of the N-terminal region of PsbQ. Secondly, the residues Pro9-Pro10-Pro11-Pro12 form a left-handed helix (or a polyproline type-II, PPII, structure), which is stabilized by H-bonds between the Pro peptide carbonyls and solvent water molecules. And thirdly, residues 14-33 are not visible in the electron density map, suggesting that this loop might be very flexible and presumably extended when PsbQ is free in solution. Based on the essential role of the N-terminal region of PsbQ in binding to PSII, we propose that both the PPII structure and the missing loop are key secondary structure elements in the recognition of specific protein-protein interactions between PsbQ and other oxygen-evolving complex extrinsic and/or intrinsic proteins of PSII. In addition, the PsbQ crystal coordinates two Zn+2 ions, one of them is proposed to have physiological role in higher plants based on the fully conservation of the ligand protein residues in the sequence subfamily.


Selected references:

Balsera, M; Arellano, JB; Revuelta, JL; de las Rivas, J; Hermoso, JA
Journal of Molecular Biology (2005) 350, 1051-1060


fnr-r264

Electron Transfer and Catalytic Mechanisms in Anabaena FNR

Ferredoxin NADP+ reductase (FNR) catalyzes the final electron transport step of linear photosynthesis. In photosynthesis, the energy of an absorbed photon is transferred in the form of electrons through a series of electron carriers ultimately forming NADPH. The three dimensional structure of differents mutants of FNR, and their complexes with the electron carriers and with inhibitors are currently on going.

Selected references:

Peregrina, JR; Herguedas, B; Hermoso, JA; Martínez-Júlvez, M; Medina, M
Biochemistry (2009) 48, 3109-3119


Tejero, J; Pérez-Dorado, I; Maya, C; Martínez-Júlvez, M; Sanz-Aparicio, J; Gómez-Moreno, C; Hermoso, JA; Medina, M
Biochemistry (2005).44, 13477-13490

Mayoral, T; Martínez-Júlvez, M; Pérez-Dorado, I; Sanz-Aparicio, J; Gómez-Moreno, C; Medina, M; Hermoso, JA
Proteins: Structure, Function and Bioinformatics (2005) 59, 592-602

Hermoso, JA; Mayoral, T; Faro, M; Gomez-Moreno, C; Sanz-Aparicio, J; Medina, M
Journal of Molecular Biology (2002), 319, 1193-1142

Faro, M; Frago, S; Mayoral, T; Hermoso, JA; Sanz-Aparicio, J; Gómez-Moreno, C; Medina, M
European Journal of Biochemistry (2002) 269, 4938-4947

Medina, M; Luquita, A; Tejero, J; Hermoso, JA; Mayoral, T; Sanz-Aparicio, J; Grever, K; Gomez-Moreno, C
Journal of Biological Chemistry (2001), 276, 11902-11912

Martínez-Júlvez, M; Nogués, I; Faro, M; Hurley, JK; Brodie, TB; Mayoral, T; Sanz-Aparicio, J; Hermoso, JA; Stankovich, MT; Medina, M; Tollin, G; Gómez-Moreno, C
Journal of Biological Chemistry (2001) 276, 27498-27510

Mayoral, T; Medina, M; Sanz-Aparicio, J; Gomez-Moreno, C; Hermoso, JA
Proteins: Structure, Function, and Genetics (2000), 38, 60-69

Martinez-Julvez, M; Hermoso, JA; Hurley, JK; Mayoral, T; Sanz-Aparicio, J; Tollin, G; Gomez-Moreno, C; Medina, M
Biochemistry (1998), 37, 17680-17691


Structure and Regulation of Methionine Cycle Enzymes
Project Leader: Julia Sanz-Aparicio
 
The methionine cycle involves a series of reactions that are essential in cellular metabolism. It regulates between the amino acids methionine and cysteine for protein synthesis and supplies the substrate for polyamine syntesis. Moreover, it provides the biochemicals that produce critical components of the methylation reaction and, therefore, it is implicated within a wide range of functions including protein production, DNA regulation and neurotransmitter production. Abnormalities in methionine metabolism are associated with cardiovascular and liver disease, neural tube defects, and cancer, and due to its essential role in the cell, it has been the subject of many experimental studies. These studies have revealed a high complexity of the cycle, in part due to the fact that the involved enzymes are activated and inhibited by intermediates of the cycle. Our aim is to get a deeper knowledge on the enzymatic mechanisms at the molecular level in order to better understand the function and the complex regulation of the methionine cycle.

MAT II. Press to get a larger image 
MAT I
Enzymatic Mechanism of Methionine Adenosyltransferase

MAT enzymes are cytosolic proteins that use methionine and ATP to synthesize S-adenosylmethionine (SAM), the main methyl-group donor for the great variety of transmethylation reactions in all organisms. Alterations in SAM levels have been detected in several diseases and hence the control of MAT activity has proved to be a potent strategy in drug design. The structural studies on tetrameric MAT I from rat liver revealed key features of the unusual two-steps enzymatic mechanism. In addition, we have proposed a structural model for MAT II that illustrates the interaction between its catalytic and regulatory subunits, and shed light into the different splicing forms identified in hepatoma cells.

Selected references:

Gonzalez, B; Garrido, F; Ortega, R; Martínez-Julvez, M; Revilla-Guarinos, A; Pérez-Pertejos. Y; Velázquez-Campoy, A; Sanz-Aparicio, J; Pajares, M
PLOS one (2012) 7(11), e50329  (doi:10.1371/journal.pone.0050329)

Pajares, MA; Gasset, M; Sanz-Aparicio, J; Calvete, JJ; Arrondo, JL
Res. Adv. In Biological Chem. (2004) 2, 31-41

González, B; Pajares, MA; Hermoso, JA; Guillerm, D; Guillerm, G; Sanz-Aparicio, J
Journal of Molecular Biology (2003) 331, 407-416

López-Vara, MC; Martínez-Chantar, ML; González, B; Gasset, M; Alvarez, L; Garrido, F; Hermoso, J;  Sanz-Aparicio, J; Pajares, M
in Methionine metabolism: molecular mechanisms and clinical implications (2000) Ed. Master Line, S.L.  ISBN: 84-930358-5-2 

González-Pérez, B; Pajares, MA; Hermoso, JA; Alvarez, L; Garrido, F; Sanz-Aparicio, J 
Journal of Molecular Biology (2000) 300, 363-375










bhmt

Structure of Betaine Homocysteine Methyltransferase


Betaine-homocysteine S-methyltransferase (BHMT) is one of the two enzymes known to methylate homocysteine to produce methionine in the liver. This enzyme is a focus of great interest due to the role of homocysteine as a potential independent risk factor for cardiovascular diseases. BHMT is an oligomer composed of four identical subunits, that belong to the thiol-selenol methyltransferases family. The 3d structure shows the mechanism activating the thiol substrate which is common to the family. It also reveals the conformational changes produced during the enzymatic reaction and the structural requirements which are specific for the different functionality within the family.

Selected references:

Garrido, F; Gasset, M; Sanz-Aparicio, J; Alfonso, C; Pajares, MA
Biochemical Journal (2005) 391, 589-599

Gonzalez-Perez, B; Pajares, MA; Martinez-Ripoll, M; Blundell, TL; Sanz-Aparicio, J 

Journal of Molecular Biology (2004) 338, 771-782   [PDF-copy]

Gonzalez-Perez, B; Sanz-Aparicio, J; Campillo, N; Pajares, MA
Biochemical Journal (2003) 370, 945-952

Gonzalez-Perez, B; Pajares, MA; Too, HP; Garrido, F; Blundell, TL; Sanz-Aparicio, J
Acta Crystallographica (2002) D58, 1507-1510


Pore-forming toxins
Project Leader: Jose M. Mancheño
See a bigger image of LSL150
Combining crystallographic and functional approaches, we have analyzed at high-resolution the sugar-binding mode of the recombinant N-terminal ricin-B domain of the haemolytic protein LSLa (LSL150) from the mushroom Laetiporus sulphureus, and also provided in vitro evidences suggesting that, together with its putative receptor-binding role, this module may also increase the solubility of its membrane pore-forming partner. We firstly demonstrate that recombinant LSL150 behaves as an autonomous folding unit and an active lectin. We have determined its crystal structure at 1.47 Å resolution, and also that of the [LSL150:(lactose)β,γ] binary complex at 1.67 Å resolution. This complex reveals two lactose molecules bound to the beta and gamma sites of LSL150, respectively. Isothermal titration calorimetry indicates that LSL150 binds two lactoses in solution with highly different affinities. Also, we test the working hypothesis that LSL150 exhibits in vivo properties typical of solubility tags. With this aim, we have fused an engineered version of LSL150 (LSLt) to the N-terminal end of various recombinant proteins. All the designed LSL150–tagged fusion proteins were successfully produced at high yield and, furthermore, the target proteins were purified by a straightforward affinity procedure on agarose-based matrices due to the excellent properties of LSL150 as affinity tag. An optimized protocol for target protein purification was devised which involved removal of the LSL150 tag through in-column cleavage of the fusion proteins with His6-tagged TEV endoprotease. These results permitted to set up a novel, lectin-based system for production and purification of recombinant proteins in E. coli cells with attractive biotechnological applications.

Selected references:

Angulo, I; Acebrón, I; de las Rivas, B; Muñoz, R; Rodríguez-Crespo, I; Menéndez, M; García, P; Tateno, H; Goldstein, IJ; Pérez-Agote, B; Mancheño, JM
Glycobiology (2011) 21, 1349-1361 (doi:10.1093/glycob/cwr074)



lsl


The crystal structure of the novel hexameric hemolytic lectin LSL from the parasitic mushroom Laetiporus sulphureus has revealed for the first time the presence of a pore-forming module which is shared with pore-forming toxins from bateria of the aerolysin family.


Selected references:

Mancheño, JM; Tateno, H; Goldstein, IJ; Martínez-Ripoll, M; Hermoso, JA
Journal of Biological Chemistry (2005) 280, 17251-17259  [PDF-copy]

Mancheño, JM; Hiroaki, T; Goldstein, IJ; Hermoso, JA
Acta Crystallographica (2004) D60, 1139-1141




 
sticho2 tetramer
sticho2 monomer
The high resolution crystal structures of the free and phosphocholine-bound water-soluble state of the actinoporin Sticholysin II, and that of a tetrameric oligomer in a lipidic interface obtained by electron microscopy have provided insights into the molecular mechanism of membrane pore formation.

Selected references:

Mancheño, JM; Martín-Benito, J; Martínez-Ripoll, M; Gavilanes, JG; Hermoso, JA
Structure (2003) 11, 1319-1328  [PDF-copy]

Mancheño, JM; Martínez-Ripoll, M; Gavilanes, JG and Hermoso, JA
Acta Crystallographica (2002) D58, 1229-1231  [PDF-copy]

[Further Information]

DNA repair mechanisms
Project Leader: Beatriz González Pérez
 
Uracil-DNA glycosylase. Click on it to see a larger image
Genomic DNA is continuously exposed to damage, its lesions threatening genome integrity and cell viability. Uracil, a base normally found in RNA, is one of the most frequent lesions in genomic DNA. Uracil-DNA glycosylases (UDGs) initiate the BER DNA repair pathway by removing uracil residues from DNA. Phage Φ29 encodes p56, a protein that inhibits UDG, ensuring that way the phage replication and survival in their hosts. We have solved the structure of UDG-p56 complex providing insights into the mechanism of Bacillus subtilis UDG inhibition by p56 and the reason why there is not cross-reactivity with other DNA binding enzymes.

Selected references:

Baños-Sanz, JI; Mojardín, L; Sanz-Aparicio, J; Lázaro, JM; Villar, L; Serrano-Heras, G; González, B; Salas, M
Nucleic Acids Research (2013) 41, 6761–6763  (doi:10.1093/nar/gkt395)
 

DNA binding proteins
Project Leader: Armando Albert
 
P16-7
Replication is the process by which organisms are able to produce an identical copy of its genetic material. Proteins responsible of replication are arranged into a supramolecular assembly called replicative complex. These structures are DNA production factories anchored to the cell membrane. The X-ray and solution structures of P16.7 provide the molecular basis of the anchorage to the membrane and the structure of these molecular factories.

Selected references:

Asensio, JL; Albert, A; Muñoz-Espin, D; Gonzalez, C; Hermoso, JA; Villar, L; Jimenez-Barbero, J; Salas, M; Meijer, W
Journal of Biological Chemistry (2005), 21, 20730-20739  (doi:10.1074/jbc.M501687200)
 

Catalytic Mechanisms in Enzymes
Project Leader: Armando Albert
 
GST. Click on it to get a larger image
Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. In the frame of a transnational research program, we have demonstrated that a single amino acid change in the glutathione-s-transferase confers high levels of DDT resistance in the African mosquito Anopheles funestus. Interestingly, this metabolic resistance marker perfectly correlates with patterns of DDT resistance across Africa. The X-ray structures of two polymorphic GSTe2 corresponding to those populations presenting an intensified resistance or sensitiveness phenotypes show that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity leading to increased DDT access and metabolism. This knowledge constitutes a valuable tool for future operational monitoring of insecticide resistance in Africa and allows us to design novel molecules with enhanced insecticide properties.

Selected reference:

Riveron, JM; Yunta, C; Ibrahim, SS; Djouaka, R; Irving, H; Menze, BD; Ismail, HM; Hemingway, J; Ranson, H; Albert, A; Wondji, CS
Genome Biology (2014) 15, R27  (doi:10.1186/gb-2014-15-2-r27)
 

pand
Aspartate decarboxylase overlaps, in the same active site, activities for self procesing after transduction, synthesis of an essential cofactor (pyruvoil group) and decarboxylation of L-aspartate.

Selected references:

Castillo, RM; Mizuguchi, K; Dhanaraj, V; Albert, A; Blundell, TL; Murzin, AG
Structure (1999) 7, 227-236  (doi:10.1016/S0969-2126(99)80028-8)

Albert, A; Dhanaraj, V; Genshel, U; Khan, G; Ramjee, MK; Pulido, R; Sibanda, BL; Delft, F; Witty, M; Blundell, TL; Smith, AG; Abell, C
Nature Structural and Molecular Biology (1998) 5, 289-293  (doi:10.1038/nsb0498-289)


Publications


2017

The structure of ligand-bound intermediates of crop ABA receptors highlights the role of the PP2C as necessary ABA co-receptor
Moreno-Alvero M1, Yunta C1, Gonzalez-Guzman M2, Lozano-Juste J, Benavente JL, Arbona V, Menéndez M, Martinez-Ripoll M, Infantes L, Gomez-Cadenas A, Rodriguez PL, Albert A
Molecular Plant (2017) 10, 1250–1253 (doi:10.1016/j.molp.2017.07.004)

Structural basis of the substrate specificity and instability in solution of a glycosidase from Lactobacillus plantarum
Acebrón I, Plaza-Vinuesa L, de Las Rivas B, Muñoz R, Cumella J, Sánchez-Sancho F, Mancheño JM
Biochimica et Biophysica Acta (2017) 1865, 1227-1236  (doi:10.1016/j.bbapap.2017.07.007)

2'-Deoxyribosyltransferase from Leishmania mexicana, an efficient biocatalyst for one-pot, one-step synthesis of nucleosides from poorly soluble purine bases
Crespo, N., Sánchez-Murcia, P.A., Gago, F., Cejudo-Sanches, J., Galmes, M.A., Fernández-Lucas, J., Mancheño, J.M.
Applied Microbiology and Biotechnology (2017) 101, 7187–7200  (doi:10.1007/s00253-017-8450-y)

A single amino acid polymorphism in the glycosyltransferase CpsK defines four Streptococcus suis serotypes
D. Roy, T. Athey, J.-P. Auger, G. Goyette-Desjardins, M.-R. Van Calsteren, D. Takamatsu, M. Okura, S. Teatero, M. Alcorlo, J.A. Hermoso, M. Segura, M. Gottschalk, and N. Fittipaldi
Scientific Reports (2017) 7 (1), 4066  (doi:10.1038/s41598-017-04403-3)

40 Años de Cristalografía en el Rocasolano
Martín Martínez Ripoll
100cias@uned, Facultad de Ciencias, nº 10 (2017)  [PDF-copy]

Catalytic Cycle of the N-Acetylglucosaminidase NagZ from Pseudomonas aeruginosa
Acebron, I.; Mahasenan, K.; De Benedetti, S.; Lee, M.; Artola-Recolons, C.; Hesek, D.; Wang, H.; Hermoso, J. A.; Mobashery, S.
Journal of the American Chemical Society (2017) 139, 6795-6798  (doi:10.1021/jacs.7b01626)


Structural features of Aspergillus niger β-galactosidase define its activity against glycoside linkages
Rico-Díaz, A., Ramírez-Escudero, M., Vizoso-Vázquez, A., Cerdán, M.E., Becerra, M. and Sanz-Aparicio, J.
The FEBS Journal (2017) 284, 1815–1829  (doi:10.1111/febs.14083)


Conformational dynamics in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus, allosteric communication network and enablement of catalysis

Mahasenan, K.; Molina, R.; Bouley, R.; Batuecas, M.; Fisher, J.; Hermoso, J.A.; Chang, M. and Mobashery, S.
Journal of the American Chemical Society (2017) 139, 2102-2110  (doi:10.1021/jacs.6b12565)

Interference of the complex between NCS-1 and Ric8a with phenothiazines regulates synaptic function and is an approach for fragile X syndrome
Alicia Mansilla, Antonio Chaves-Sanjuan, Nuria E. Campillo, Ourania Semelidou, Loreto Martínez-González, Lourdes Infantes, Juana María González-Rubio, Carmen Gil, Santiago Conde, Efthimio M. C. Skoulaki, Alberto Ferrús, Ana Martínez, María José Sánchez-Barrena
Proceedings of the National Academy of Sciences, PNAS (2017) 114, E999–E1008  (doi:10.1073/pnas.1611089114)

Muropeptide Binding and the X-Ray Structure of the Effector Domain of the Transcriptional Regulator AmpR of Pseudomonas aeruginosa
Dik, D. A., Domínguez-Gil, T., Lee, M., Hesek, D., Byun, B., Fishovitz, J., Boggess, B., Hellman, L. M., Fisher, J. F., Hermoso, J. A., Mobashery, S.
Journal of the American Chemical Society (2017)
139, 1448–1451  (doi:10.1021/jacs.6b12819)

Carbohydrate recognition and lysis by bacterial peptidoglycan hydrolases
Martin Alcorlo, Siseth Martinez-Caballero, Rafael Molina and Juan A Hermoso
Current Opinion in Structural Biology (2017) 44, 87–100  (doi:10.1016/j.sbi.2017.01.001)



2016

Modular Architecture and Unique Teichoic Acid Recognition Features of Choline-Binding Protein L (CbpL) Contributing to Pneumococcal Pathogenesis
J. Gutiérrez-Fernández, M. Saleh, M. Alcorlo, A. Gómez M., D. Pantoja-Uceda, M. A. Treviño, F. Voß, M. R. Abdullah, S. Galán-Bartual, J. Seinen,  P. A. Sánchez-Murcia, F. Gago, M. Bruix, S. Hammerschmidt and J. A. Hermoso
Scientific Reports (2016) 6, art. 38094  (doi:10.1038/srep38094)

Oriented Attachment of Recombinant Proteins to Agarose-Coated Magnetic Nanoparticles by Means of a β‑Trefoil Lectin Domain
Iván Acebrón,Amalia G. Ruiz-Estrada, Yurena Luengo, María del Puerto Morales,José Manuel Guisán, and José Miguel Mancheño
Bioconjugate Chemistry (2016) 27, 2734−2743  (doi:10.1021/acs.bioconjchem.6b00504)

Átomos y moléculas de cristal
Martín Martinez-Ripoll
conCIENCIAS.digital (2016) 18, 24-35  (link to the issue)  [PDF-copy]

Structural bioinformatics in broad-spectrum racemases: a new path in antimicrobial research
Noelia Bernardo-García, Pedro Sánchez-Murcia, Federico Gago, Felipe Cava and Juan A. Hermoso
Current Organic Chemistry (2016) 20, 1222-1231  (doi:10.2174/1385272819666150810213115)

Activation by Allostery in Cell-Wall Remodeling by a Modular Membrane-Bound Lytic Transglycosylase from Pseudomonas aeruginosa

T. Domínguez-Gil, M. Lee, I. Acebrón-Avalos, K. V. Mahasenan, D. Hesek, D. A. Dik, B. Byun, E. Lastochkin, J. F. Fisher, S. Mobashery and J. A. Hermoso
Structure (2016) 24, 1729-1741  (doi:10.1016/j.str.2016.07.019)

Structural and functional characterization of a ruminal β-glycosidase defines a novel subfamily of glycosyl hydrolase family 3 with permuted domain topology
Mercedes Ramírez-Escudero, Mercedes V. del Pozo, Julia Marín-Navarro, Beatriz González, Peter N. Golyshin, Julio Polaina, Manuel Ferrer and Julia Sanz-Aparicio
Journal of Biological Chemistry (2016) 291, 24200-24214  (doi:10.1074/jbc.M116.747527)

The glycoside hydrolase family 8 reducing-end xylose-releasing exo-oligoxylanase Rex8a from Paenibacillus barcinonensis BP-23 is active on branched xylooligosaccharides

Susana Valenzuela, Sergi López, S., Peter Biely, Julia Sanz-Aparicio, F. Javier Pastor
Applied and Environmental Microbiology (2016) 82, 5116-5124  (doi:10.1128/AEM.01329-16)

Molecular characterization and heterologous expression of a Xanthophyllomyces dendrorhous α-glucosidase with potential for prebiotics production
Patricia Gutiérrez-Alonso, María Gimeno-Pérez, Mercedes Ramírez-Escudero, Francisco J. Plou, Julia Sanz-Aparicio, María Fernández-Lobato
Applied Microbiology and Biotechnology (2016) 100, 3125-3135  (doi: 10.1007/s00253-015-7171-3)

Renew or Die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens
T. Domínguez-Gil, R. Molina, M. Alcorlo and J. A. Hermoso
Drug Resistance Updates (2016) 28, 91-104  (doi:10.1016/j.drup.2016.07.002)

Orthologous and paralogous AmpD Peptidoglycan Amidases from Gram-Negative Bacteria
Ivanna Rivera, Rafael Molina, Mijoon Lee, Shariar Mobashery and Juan A. Hermoso
Microbial Drug Resistance (2016) 22, 470-476, Great Wall 2015 Article  (doi:10.1089/mdr.2016.0083)


Turnover of Bacterial Cell Wall by SltB3, a Multidomain Lytic Transglycosylase of Pseudomonas aeruginosa
Lee, M.; Domínguez-Gil, T.; Hesek, D.; Mahasenan, K. V.; Lastochkin, E.; Hermoso, J. A.; Mobashery, S.
ACS Chemical Biology (2016) 11, 1525-1531  (doi:10.1021/acschembio.6b00194)


The structures of two scorpionates: Thallium tetrakis(3-phenyl-1H-pyrazol-1-yl)borate and potassium tetrakis(3-cyclopropyl-1H-pyrazol-1-yl)borate
Infantes, L.; Claramunt, R.M.; Sanz, D.; Alkorta, I.; Elguero, J.
Acta Crystallographica (2016) C72, 819-825 (doi:10.1107/S2053229616007385)

Structural insights into the synthesis of FMN in prokaryotic organisms
Beatriz Herguedas,  Isaías Lans,  Juan A.  Hermoso,  Marta Martínez-Júlvez and  M. Medina
Acta Crystallographica (2016) D71, 2526-2542  (doi:10.1107/S1399004715019641)

Two-Photon Fluorescence Anisotropy Imaging to Elucidate the Dynamics and the Stability of Immobilized Proteins
Orrego AH,  García C, Mancheño JM, Guisán JM, Lillo MP, López-Gallego F
Journal of Physical Chemistry B (2016) 120, 485-491  (doi:10.1021/acs.jpcb.5b12385)

Structural analysis of 
β-fructofuranosidase from Xanthophyllomyces dendrorhous reveals unique features and the crucial role of N-glycosylation in oligomerization and activity
M Ramírez-Escudero, M Gimeno-Pérez, B González, D Linde, Z Merzdo, M Fernández-Lobato, J Sanz-Aparicio
Journal of Biological Chemistry (2016) 291, 6843-6857  (doi:10.1074/jbc.M115.708495)

Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling
Maira Diaza, Maria Jose Sanchez-Barrena, Juana Maria Gonzalez-Rubio, Lesia Rodriguez, Daniel Fernandez, Regina Antoni, Cristina Yunta, Borja Belda-Palazon, Miguel Gonzalez-Guzman, Marta Peirats-Llobet, Margarita Menendez, Jasminka Boskovic, Jose A. Marquez, Pedro L. Rodriguez, and Armando Albert
Proceedings of the National Academy of Sciences, PNAS (2016) 113, E396-E405 (doi: 10.1073/pnas.1512779113)



2015

Synthesis of Enantiopure 3-Hydroxypiperidines from Sulfinyl Dienyl Amines by Diastereoselective Intramolecular Cyclization and [2,3]-Sigmatropic Rearrangement
Simal, C.; Bates, R.H.; Urena, M.; Giménez, I.; Koutsou, C.; Fernández De La Pradilla, R.; Viso, A.; Infantes, L.
Journal of Organic Chemistry (2015) 80, 7674-7692  (doi:10.1021/acs.joc.5b01307)

Prediction of H-bonding motifs for pyrazoles and oximes using the Cambridge structural database
Infantes, L.; Motherwell, S.
in Science of Crystal Structures: Highlights in Crystallography (2015) 269-280, Springer International Publishing (doi:10.1007/978-3-319-19827-9_28)


Structural insights into the synthesis of FMN in prokaryotic organisms
Beatriz Herguedas,  Isaías Lans,  Juan A.  Hermoso,  Marta Martínez-Júlvez and  M. Medina
Acta Crystallographica (2015) D71, 2526-2542  (doi:10.1107/S1399004715019641)

Molecular characterization and heterologous expression of a Xanthophyllomyces dendrorhous α-glucosidase with potential for prebiotics production

Patricia Gutiérrez-Alonso, María Gimeno-Pérez, Mercedes Ramírez-Escudero, Francisco J. Plou, Julia Sanz-Aparicio, María Fernández-Lobato
Applied Microbiology and Biotechnology (2015) 100, 3125-3135  (doi: 10.1007/s00253-015-7171-3)

Celebrating 100 years of modern crystallography
Mancheño, J.M. (coord)
Arbor (2015) 191 (772): a223  (doi: 10.3989/arbor.2015.i772)

Presentation
Mancheño, J.M.
in Celebrating 100 years of modern crystallography. (Mancheño, J.M., coord.), Arbor (2015) 191 (772): a223  [PDF-copy]

Personal perspectives
Mancheño, J.M.
in Celebrating 100 years of modern crystallography. (Mancheño, J.M., coord.), Arbor (2015) 191 (772): a223  [PDF-copy]

The legacy of women to crystallography
Sanz-Aparicio, J.
in Celebrating 100 years of modern crystallography. (Mancheño, J.M., coord.), Arbor (2015) 191 (772): a223  [PDF-copy]

The new InsP3Kinase inhibitor BIP4 is competitive to InsP3 and blocks proliferation and adhesion of lung cancer cells
Schröder D, Tödter K, Franco-Echevarría, E, Gonzalez  B, Rohaly G and Sabine Windhorst
Biochemical Pharmacology (2015) 96, 143-150  (doi: 10.1016/j.bcp.2015.05.004)

Enantioselective oxidation of galactitol 1-phosphate by galactitol-1-phosphate 5-dehydrogenase from Escherichia coli
Rocío Benavente, María Esteban-Torres, Gert-Wieland Kohring, Álvaro Cortés-Cabrera, Pedro A. Sánchez-Murcia, Federico Gago, Iván Acebrón, Blanca de las Rivas, Rosario Muñoz and José M. Mancheño
Acta Crystallographica (2015) D71, 1540-1554   (doi: 10.1107/S1399004715009281)

Exploring multimodularity in plant cell wall deconstruction: structural and functional analysis of Xyn10C containing the CBM22-1-CBM22-2 tandem
M. Angela Sainz-Polo, Beatriz González, Margarita Menéndez, F.I. Javier Pastor and Julia Sanz-Aparicio
Journal of Biological Chemistry (2015) 290, 17116-17130  
(doi:10.1074/jbc.M115.659300)

Structure and functions of choline binding proteins
Galán-Bartual S., Pérez-Dorado I., García P. and Hermoso J.A.
In Streptococcus Pneumoniae Molecular Mechanisms of Host-Pathogen Interactions (2015), Chap. 11, pp. 207-230. Jeremy Brown, Sven Hammerschmidt and Carlos Orihuela Eds., Elsevier. ISBN: 978-0-12-410530-0

Synthesis of a heterogeneous artificial metallolipase with chimeric catalytic activity
M. Filice, O. Romero, J. Gutiérrez-Fernández, B. de las Rivas, J. A. Hermoso and J. M. Palomo
Chemical Communications (2015) 51, 9324-9327  (doi:10.1039/C5CC02450A)

The Allosteric Site for the Nascent Cell Wall in Penicillin-Binding Protein 2a: an Achilles’ Heel of Methicillin-Resistant Staphylococcus aureus
Ivan Acebrón, Mayland Chang, Shahriar Mobashery and Juan A. Hermoso
Current Medicinal Chemistry (2015) 22, 1678-1686  (doi:10.2174/0929867322666150311150215)

The bacteriocin AS-48 requires dimer dissociation followed by hydrophobic interactions with the membrane for antibacterial activity.
Cebrián R, Martínez-Bueno M, Valdivia E, Albert A, Maqueda M, Sánchez-Barrena MJ.
Journal of  Structural Biology (2015) 190, 162–172  (doi:10.1016/j.jsb.2015.03.006)
 
Molecular recognition of PTS-1 cargo proteins by Pex5p: implications for protein mistargeting in primary hyperoxaluria
Mesa-Torres N, Tomic N, Albert A, Salido E, Pey AL.
Biomolecules (2015) 5, 121-141  (doi:10.3390/biom5010121)
 
Discovery of Antibiotic (E)‑3-(3-Carboxyphenyl)-2-(4-cyanostyryl)quinazolin-4(3H)‑one
Renee Bouley, Malika Kumarasiri, Zhihong Peng, Lisandro H.Otero, Wei Song, Mark A.Suckow, Valerie A.Schroeder, William R.Wolter, Elena Lastochkin, Nuno T.Antunes, Hualiang Pi, Sergei Vakulenko, Juan A.Hermoso, Mayland Chang, and Shahriar Mobashery
Journal of the American Chemical Society (2015) 137, 1738−1741  (doi:10.1021/jacs.5b00056)

Experimental and Theoretical Studies on the Rearrangement of 2-Oxoazepane α,α-Amino Acids into 2’-Oxopiperidine β2,3,3-AminoAcids: An Example of Intramolecular Catalysis
Núñez-Villanueva, D.; Bonache, M. A.; Lozano, L.; Infantes, L.; Elguero, J.; Alkorta, I.; García-López, M.T.; González-Muñiz, R.; Martín-Martínez, M.
Chemistry - A European Journal (2015) 21, 2489-2500  (doi:10.1002/chem.201405640)

The Reaction of 2-Amino-4H-pyrans with N-Bromosuccinimide.
Samadi, A.; Silva, D.; Chioua, M.; Infantes, L.; Soriano, E.; Marco-Contelles, J.
Molecular Diversity (2015) 19, 103-122  (doi:10.1007/s11030-014-9560-4)



2014

Silver Triflate-Catalyzed Cyclization of 2-Amino-6-propargyl-amineazines Leading to Iminoimidazoazines
Chioua, M.; Samadi, A.; Soriano, E.; Infantes, L.; Marco-Contelles, J.
Advanced Synthesis and Catalysis (2014) 356, 1235-1241  (doi:10.1002/adsc.201300799)

Characterization of a cold-active esterase from Lactobacillus plantarum suitable for food fermentations
Esteban-Torres, M.; Mancheño, J.M.; de las Rivas, B.; Muñoz, R.
Journal of Agricultural and Food Chemistry (2014) 62, 5126-5132  (doi:10.1021/jf501493z)

Characterization of a versatile arylesterase from Lactobacillus plantarum active on wine esters
Esteban-Torres, M.; Barcenilla, J.M.; Mancheño, J.M.; de las Rivas, B.; Muñoz, R.
Journal of Agricultural and Food Chemistry (2014) 62, 5118-5125  (doi:10.1021/jf500991m)

Production and characterization of a tributyrin esterase from Lactobacillus plantarum suitable for cheese lipolysis
Esteban-Torres, M.; Mancheño. J.M.; de las Rivas, B.; Muñoz, R.
Journal of Dairy Science (2014) 97, 6737-6744  (doi:10.3168/jds.2014-8234) 


A new calmodulin binding motif for inositol 1,4,5-trisphosphate 3-kinase regulation
Franco-Echevarria, E., Baños-Sanz, J.I., Monterroso, B., Round A, Sanz-Aparicio, J., González, B.
Biochemical Journal (2014) 463, 319-328  (doi:10.1042/BJ20140757)

C2-Domain Abscisic Acid-Related Proteins Mediate the Interaction of PYR/PYL/RCAR Abscisic Acid Receptors with the Plasma Membrane and Regulate Abscisic Acid Sensitivity in Arabidopsis
Lesia Rodriguez, Miguel Gonzalez-Guzman, Maira Diaz, Americo Rodrigues, Ana C. Izquierdo-Garcia, Marta Peirats-Llobet, Maria A. Fernandez, Regina Antoni, Daniel Fernandez, Jose A. Marquez, Jose M. Mulet, Armando Albert, and Pedro L. Rodriguez
The Plant Cell (2014) 26, 4802-4820  (doi:10.1105/tpc.114.129973)


Structural Basis for Selective Recognition of Endogenous and Microbial Polysaccharides by Macrophage Receptor SIGN-R1
Noella Silva-Martín, Sergio G. Bartual, Erney Ramírez-Aportela, Pablo Chacón, Chae Gyu Park and Juan A. Hermoso
Structure (2014) 22, 1595-1606  (doi:10.1016/j.str.2014.09.001)


Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress
Antonio Chaves-Sanjuan, Maria Jose Sanchez-Barrena, Juana Maria Gonzalez-Rubio, Maria Moreno, Paula Ragel, Marta Jimenez, Jose M. Pardo, Martin Martinez-Ripoll, Francisco J. Quintero, and Armando Albert
Proceedings of the National Academy of Sciences, PNAS (2014) 111, 4532-4541  (doi:10.1073/pnas.1407610111)

Structural analysis of glucuronoxylan specific Xyn30D and its attached CBM35 domain give insights into the role of modularity in specificity
Sainz-Polo, M.A.Valenzuela, S., González-Pérez, B., Pastor, F.J., Sanz-Aparicio, J.
Journal of Biological Chemistry (2014) 289,  31088-31101  (doi: 10.1074/jbc.M114.597732)


Crystallization and preliminary X-ray diffraction data of β-galactosidase from Aspergillus niger
Rico-Díaz, A., Vizoso-Vázquez, A-, Cerdán, M.A., Becerra, M., Sanz-Aparicio, J.
Acta Crystallographica (2014) F70, 1529-1531  (doi:10.1107/S2053230X14019815)


Crystallization and preliminary X-ray diffraction analysis of Xyn30D from Paenibacillus barcinonensis
Sainz-Polo, M.A.Valenzuela, S., Pastor, F.J., Sanz-Aparicio, J.
Acta Crystallographica (2014) 963-966  (doi:10.1107/S2053230X14012035)


The guanine-exchange factor Ric8a binds the calcium sensor NCS-1 to regulate synapse number and probability of release
Jesús Romero-Pozuelo, Jeffrey S. Dason, Alicia Mansilla, Soledad Baños-Mateos, José L. Sardina, Antonio Chaves-Sanjuán, Jaime Jurado-Gómez, Elena Santana, Harold L. Atwood, Ángel Hernández-Hernández, María-José Sánchez-Barrena and Alberto Ferrús
Journal of Cell Science (2014) 127, 4246-4259  (doi:10.1242/ ​jcs.152603)


Crystal structures of Ophiostoma piceae sterol esterase: Activation mechanism and product release
Javier Gutiérrez-Fernández; María Eugenia Vaquero; Alicia Prieto; Jorge Barriuso; María Jesús Martínez and  Juan A. Hermoso
Journal of Structural Biology (2014) 187, 215-222  (doi:10.1016/j.jsb.2014.07.007)

Structure of the pneumococcal L,D-carboxypeptidase DacB and pathophysiological effects of disabled cell wall hydrolases DacA and DacB
Mohammed R. Abdullah, Javier Gutiérrez-Fernández, Thomas Pribyl, Nicolas Gisch, Malek Saleh, Manfred Rohde, Lothar Petruschka, Gerhard Burchhardt, Dominik Schwudke, Juan A. Hermoso and Sven Hammerschmidt
Molecular Microbiology (2014) 93, 1183–1206  (doi:10.1111/mmi.12729)

Comparative study of two GH19 chitinase-like proteins from Hevea brasiliensis, one exhibiting a novel carbohydrate-binding domain
Martínez-Caballero, Siseth; Cano-Sánchez, Patricia; Mares-Mejía, Israel; Díaz-Sánchez, Angel; Macías-Rubalcava, Martha; Hermoso, Juan; Rodríguez-Romero, Adela
FEBS Journal (2014) 281, 4535–4554  (doi:10.1111/febs.12962)


The consensus-based approach for gene/enzyme replacement therapies and crystallization strategies: the case of human alanine:glyoxylate aminotransferase
Mesa-Torres N, Yunta C, Fabelo-Rosa I, Gonzalez-Rubio JM, Sanchez-Ruiz JM, Salido E, Albert A, Pey AL
Biochemical Journal (2014) 462, 453-463  (doi:10.1042/BJ20140250)

Penicillin-binding Protein 2a of Methicillin-resistant Staphylococcus aureus
Jennifer Fishovitz, Juan A Hermoso, Mayland Chang, and Shahriar Mobashery
International Union of Biochemistry and Molecular Biology Journal (IUBMB Life) (2014) 66, 572-577  (doi:10.1002/iub.1289)


Structure and Cell Wall Cleavage by Modular Lytic Transglycosylase MltC of Escherichia coli
C. Artola-Recolons; M. Lee; N. Bernardo-García; B. Blázquez; D. Hesek; S. Bartual; K.V. Mahasenan; E. Lastochkin; H. Pi; K. Meindl; W. Boggess; I. Uson; J.F. Fisher; S. Mobashery and J.A. Hermoso
ACS Chemical Biology (2014) 9, 2058–2066  (doi:10.1021/cb500439c)

Disruption of Allosteric Response as an Unprecedented Mechanism of Resistance to Antibiotics
Jennifer Fishovitz, Alzoray Rojas-Altuve, Lisandro H Otero, Matthew Dawley, Cesar Carrasco-López, Mayland Chang, Juan A Hermoso and Shahriar Mobashery
Journal of the American Chemical Society (2014) 136, 9814–9817  (doi:10.1021/ja5030657)


Structure solution with ARCIMBOLDO using fragments derived from distant homology models
Sammito, Massimo; Meindl, Kathrin; de Ilarduya, Iñaki; Millán, Claudia; Artola-Recolons, Cecilia; Hermoso, Juan and Usón, Isabel
FEBS Journal (2014) 281, 4029–4045  (doi:10.1111/febs.12897)
 
Structural insights into the coenzyme mediated monomer-dimer transition of the pro-apoptotic Apoptosis Inducing Factor
Ferreira, Patricia; Villanueva, Raquel; Martínez-Júlvez, Marta; Herguedas, Beatriz; Marcuello, Carlos; Fernandez-Silva, Patricio; Cabon, Lauriane; Hermoso, Juan; Lostao, Anabel; Susin, Santos; Medina, Milagros
Biochemistry (2014) 53, 4204–4215  (doi:10.1021/bi500343r)

El CSIC cumple 75 años
Martín Martínez-Ripoll, J. M. López Sancho, Esteban Moreno Gómez
Revista Española de Física (2014) 28, 25-27  
[PDF copy]

Aportaciones de la cristalografía a la medicina. De la comprensión de las armas moleculares de los patógenos al desarrollo de fármacos contra enfermedades infecciosas
Juan A. Hermoso
Investigación y Ciencia (2014) 454, 11-14  [PDF copy]


Escherichia coli LacZ
β-galactosidase inhibition by monohydroxyacetylated glycopyranosides: Role of the acetyl groups
Jana Brabcova, Cesar Carrasco-Lopez, Teodora Bavaro, Juan A. Hermoso, Jose M. Palomo
Journal of Molecular Catalysis B: Enzymatic (2014) 107, 31-38  (doi:10.1016/j.molcatb.2014.05.008)

Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance
Gonzalez-Guzman M, Rodriguez L, Lorenzo-Orts L, Pons C, Sarrion-Perdigones A, Fernandez MA, Peirats-Llobet M, Forment J, Moreno-Alvero M, Cutler SR, Albert A, Granell A, Rodriguez PL
Journal of  Experimental Botany (2014) 65, 4451-4464   (doi:10.1093/jxb/eru219)

A complement to the modern crystallographer’s toolbox: caged gadolinium complexes with versatile binding modes
Meike Stelter, Rafael Molina, Sandra Jeudy, Richard Kahn, Chantal Abergele and Juan A. Hermoso
Acta Crystallographica (2014) D70, 1506–1516  (doi:10.1107/S1399004714005483)

Structural basis of PcsB-mediated cell separation in Streptococcus pneumoniae
Sergio G. Bartual, Daniel Straume, Gro Anita Stamsås, Inés G. Muñoz, Carlos Alfonso, Martín Martínez-Ripoll, Leiv Sigve Håvarstein and Juan A. Hermoso
Nature Communications (2014) 5, Article number 3842 (
doi:10.1038/ncomms4842)

Peptidoglycan Remodeling by the Coordinated Action of Multispecific Enzymes
Laura Alvarez, Akbar Espaillat, Juan A. Hermoso, Miguel A. de Pedro, and Felipe Cava
Microbial Drug Resistance (2014) 20, 1-9   (doi:10.1089/mdr.2014.0047)

Frq2 from Drosophila melanogaster: cloning, expression, purification, crystallization and preliminary X-ray analysis
Baños-Mateos S, Chaves-Sanjuán A, Mansilla A, Ferrús A, Sánchez-Barrena MJ
Acta Crystallographica (2014) F70, 530-534   (doi:10.1107/S2053230X14005408)

Preliminary crystallographic analysis of the ankyrin-repeat domain of Arabidopsis thaliana AKT1: identification of the domain boundaries for protein crystallization
Chaves-Sanjuán A, Sánchez-Barrena MJ, González-Rubio JM, Albert A.
Acta Crystallographica (2014) F70, 509-512   (doi:10.1107/S2053230X14005093)

A través del cristal. Cómo la cristalografía ha cambiado la visión del mundo
Martín Martínez-Ripoll, Juan A. Hermoso y Armando Albert (coord.)
Editorial CSIC-Catarata (2014) ISBN: 978-84-00-09800-1.

Una historia con claroscuros plagada de laureados Nobel
Martín Martínez-Ripoll
in A través del cristal. Cómo la cristalografía ha cambiado la visión del mundo (2014). (M. Martínez-Ripoll, J.A. Hermoso y Armando Albert, coord.), CSIC-Catarata, pp. 15-41, ISBN: 978-84-00-09800-1.

Una ventana hacia las enfermedades infecciosas
Noelia Bernardo-García y Juan A. Hermoso
in A través del cristal. Cómo la cristalografía ha cambiado la visión del mundo (2014). (M. Martínez-Ripoll, J.A. Hermoso y Armando Albert, coord.), CSIC-Catarata, pp. 99-118,  ISBN: 978-84-00-09800-1.

El arma secreta de la biotecnología
Julia Sanz Aparicio
in A través del cristal. Cómo la cristalografía ha cambiado la visión del mundo (2014). (M. Martínez-Ripoll, J.A. Hermoso y Armando Albert, coord.), CSIC-Catarata, pp. 155-170,  ISBN: 978-84-00-09800-1.

Comunicación celular a escala atómica
Armando Albert
in A través del cristal. Cómo la cristalografía ha cambiado la visión del mundo (2014). (M. Martínez-Ripoll, J.A. Hermoso y Armando Albert, coord.), CSIC-Catarata, pp. 171-182, ISBN: 978-84-00-09800-1.

A través del cristal y más allá
Martín Martínez-Ripoll, Juan A. Hermoso y Armando Albert
in A través del cristal. Cómo la cristalografía ha cambiado la visión del mundo (2014). (M. Martínez-Ripoll, J.A. Hermoso y Armando Albert, coord.), CSIC-Catarata, pp. 183-188,  ISBN: 978-84-00-09800-1.

Esterase LpEst1 from Lactobacillus plantarum: A Novel and Atypical Member of the αβ Hydrolase Superfamily of Enzymes
Yanaisis Alvarez, María Esteban-Torres, Álvaro Cortés-Cabrera, Federico Gago, Iván Acebrón, Rocío Benavente, Karin Mardo, Blanca de las Rivas, Rosario Muñoz, José M. Mancheño
PLoS ONE (2014) 9: e92257   (doi:10.1371/journal.pone.0092257)

Pneumococcal phosphoglycerate kinase interacts with plasminogen and its tissue activator
M. Fulde, N. Bernardo-García, M. Rohde, N. Nachtigall, R. Frank, K.T. Preissner, J. Klett, A. Morreale, G.S. Chhatwal, J.A. Hermoso, S. Bergmann
Thrombosis and Haemostasis (2014) 111, 401-416  (doi:10.1160/TH13-05-0421)

A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector
Riveron JM, Yunta C, Ibrahim SS, Djouaka R, Irving H, Menze BD, Ismail HM, Hemingway J, H. Ranson, A. Albert  and C.S. Wondji
Genome Biology (2014) 15, R27  (doi:10.1186/gb-2014-15-2-r27)

Getting CAD in Shape: The Atomic Structure of Human Dihydroorotase Domain
Hermoso J.A.
Structure (2014) 22, 179-181  (doi:10.1016/j.str.2014.01.005)

La ONU declara 2014 Año Internacional de la Cristalografía
Martín Martínez-Ripoll
mi+d (2014) published in Análisis Madri+d on 28 Jan. 2014   [PDF-copy]

Crystal structures of CbpF complexed with atropine and ipratropium reveal clues for the design of novel antimicrobials against Streptococcus pneumoniae
Noella Silva-Martín, Gracia Retamosa; Beatriz Maestro; Sergio G Bartual, María J Rodes; Pedro García, Jesús M Sanz, Juan A. Hermoso
Biochimica et Biophysica Acta - General Subjects (2014) 1840, 129-135  (doi:10.1016/j.bbagen.2013.09.006)

The C-terminal extension of bacterial flavodoxin-reductases: involvement in the hydride transfer mechanism from the coenzyme
Ana Bortolotti, Ana Sánchez-Azqueta, Celia M Maya, Adrián Velázquez, Juan A Hermoso, Milagros Medina, Néstor Cortez
Biochimica et Biophysica Acta - Bioenergetics (2014) 1837, 33-43  (doi:10.1016/j.bbabio.2013.08.008)

Structural bases for the broad specificity of a new family of amino acid racemases
Akbar  Espaillat, Cesar  Carrasco-López, Noelia Bernardo-García, Natalia Pietrosemolli, Lisandro H. Otero, Laura Alvarez, Miguel A. de Pedro, Florencio Pazos, Brigid M. Davis, Matthew K. Waldor, Juan A.  Hermoso and Felipe Cava
Acta Crystallographica (2014) D70, 79-90  (doi:10.1107/S1399004713024838)




2013

Molecular architecture of Streptococcus pneumoniae surface thioredoxin-fold lipoproteins crucial for extracellular oxidative stress resistance and maintenance of virulence
Malek Saleh, Sergio G. Bartual, Mohammed R. Abdullah, Inga Jensch, Tauseef M. Asmat, Lothar Petruschka, Thomas Pribyl, Juan A. Hermoso and Sven Hammerschmidt
EMBO Molecular Medicine (2013) 5, 1852-1870  (doi:10.1002/emmm.201202435)

The role of protein denaturation energetics and molecular chaperones in the aggregation and mistargeting of mutants causing primary hyperoxaluria type I
Mesa-Torres, N., Fabelo-Rosa, I., Riverol, D., Yunta, C., Albert, A., Salido, E., Pey, A.L.
PLoS ONE (2013) 8, e71963  (doi:10.1371/journal.pone.0071963)

Evolutionary Adaptation of the Fly Pygo PHD Finger toward Recognizing Histone H3 Tail Methylated at Arginine 2
Thomas C.R. Miller, Juliusz Mieszczanek, María José Sánchez-Barrena, Trevor J. Rutherford, Marc Fiedlersend, Mariann Bienz
Structure (2013) 21, 2208–2220  (doi:10.1016/j.str.2013.09.013)

Characterization of a feruloyl esterase from Lactobacillus plantarum.
Esteban-Torres M, Reverón I, Mancheño JM, de Las Rivas B, Muñoz R.
Applied and Environmental Microbiology (2013) 79, 5130-5136  (doi:10.1128/AEM.01523-13)

Identification of a missing link in the evolution of an enzyme into a transcriptional regulator.
Durante-Rodríguez G, Mancheño JM, Rivas G, Alfonso C, García JL, Díaz E, Carmona M.
PLoS ONE (2013) 8, e57518  (doi:10.1371/journal.pone.0057518)


The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance
Pizzio, G.A., Rodriguez, L., Antoni, R., González-Guzman, M., Yunta, C., Merilo, E., Kollist, H., Albert, A., Rodriguez, P.L.
Plant Physiology (2013) 163, 441-55 (doi: 10.1104/pp.113.224162)


Structure, biochemical characterization and analysis of the pleomorphism of carboxylesterase Cest-2923 from Lactobacillus plantarum WCFS1
Benavente, R; Esteban-Torres, M; Acebrón, I; de Las Rivas, B; Muñoz, R; Alvarez, Y; Mancheño, JM.
The FEBS Journal (2013) 280, 6658-6671 (doi:10.1111/febs.12569)


How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function

Lisandro H. Otero, Alzoray Rojas-Altuve, Leticia I. Llarrull, Cesar Carrasco-López, Malika Kumarasiri, Elena Lastochkin, Jennifer Fishovitz, Matthew Dawley, Dusan Hesek, Mijoon Lee, Jarrod W. Johnson, Jed F. Fisher, Mayland Chang, Shahriar Mobashery, Juan A. Hermoso
Proceedings of the National Academy of Sciences (2013) 110, 16808-16813  (doi:10.1073/pnas.1300118110)

Cell-Wall Remodeling by the Zinc-Protease AmpDh3 from Pseudomonas aeruginosa
Lee, M., Artola-Recolons, C., Carrasco-López, C., Martínez-Caballero, S., Hesek, D., Spink, E., Lastochkin, E., Zhang, W., Hellman, L., Boggess, B., Hermoso, J. and Mobashery, S.
Journal of the American Chemical Society (2013) 135, 12604-12607  (doi:10.1021/ja407445x)

Protein homeostasis defects of alanine-glyoxylate aminotransferase: new therapeutic strategies in primary hyperoxaluria type I
Pey, A.L., Albert, A., Salido, E.
Biomed Research International (2013) 2013:687658   (doi:10.1155/2013/687658)

Reaction products and the X-ray structure of AmpDh2, a virulence determinant of Pseudomonas aeruginosa

Siseth Martínez-Caballero, Mijoon Lee, Cecilia Artola-Recolons, César Carrasco-López, Dusan Hesek, Edward Spink, Elena Lastochkin, Weilie Zhang, Lance M. Hellman, Bill Boggess, Shahriar Mobashery and Juan A. Hermoso
Journal of the American Chemical Society (2013) 135, 10318−10321  (doi:10.1021/ja405464b)


¿Cómo aprendimos a "ver" los átomos?
Martín Martínez-Ripoll
in Serie El CSIC en la Escuela, Investigación sobre la enseñanza de la ciencia en el aula (2013), Number 9, pp. 9-34, e-ISBN (n.º 9): 978-84-00-09659-5  [PDF-copy]

Crystal structure and functional insights into uracil-DNA glycosylase inhibition by phage ϕ29 DNA mimic protein p56

José Ignacio Baños-Sanz, Laura Mojardín, Julia Sanz-Aparicio, José M. Lázaro, Laurentino Villar, Gemma Serrano-Heras, Beatriz González, and Margarita Salas
Nucleic Acids Research (2013) 
41,  6761-6773   (doi:10.1093/nar/gkt395)

Heteroresistance to Fosfomycin Is Predominant in Streptococcus pneumoniae and Depends on the murA1 Gene
Hansjürg Engel, Javier Gutiérrez-Fernández, Christine Flückiger, Martín Martínez-Ripoll, Kathrin Mühlemann, Juan A. Hermoso, Markus Hilty and Lucy J. Hathaway
Antimicrobial Agents and Chemotherapy (2013) 57, 2801-2808  (doi:10.1128/AAC.00223-13)


Structural Biology of a Major Signaling Network that Regulates Plant Abiotic Stress: The CBL-CIPK Mediated Pathway

María José Sánchez-Barrena, Martín Martínez-Ripoll and Armando Albert
International Journal of Molecular Sciences (2013) 14, 5734-5749  (doi:10.3390/ijms14035734)

Synthesis of 6-Kestose using an Efficient β-Fructofuranosidase Engineered by Directed Evolution
Miguel de Abreu, Miguel Alvaro-Benito, Julia Sanz-Aparicio, Francisco J. Plou, Maria Fernandez-Lobato and Miguel Alcalde
Advanced Synthesis & Catalysis (2013) 
355, 1698–1702  (doi:10.1002/adsc.201200769)

The three-dimensional structure of Saccharomyces invertase: role of a noncatalytic domain in oligomerization and substrate specificity
M. Angela Sainz-Polo, Mercedes Ramírez-Escudero, Alvaro Lafraya, Beatriz González, Julia Marín-Navarro, Julio Polaina and Julia Sanz-Aparicio
Journal of Biological Chemistry (2013) 288, 9755-9766  (doi:10.1074/jbc.M112.446435)

Highly functionalized β,γ–diamino compounds through reductive amination of amino acid-derived β–keto esters
P. Pérez-Faginas, M.T. Aranda, M.T. García-López, L. Infantes, A. Fernández-Carvajal, J.M. González-Ros, A. Ferrer-Montiel and R. González-Muñiz
PLoS ONE (2013) 8, e53231   (doi:10.1371/journal.pone.0053231)

The Silver-catalyzed Cyclization of N-(prop-2-yn-1-yl)pyridin-2-amines
M. Chioua, E. Soriano, L. Infantes, M.L. Jimeno, J. Marco-Contelles and A. Samadi
European Journal of Organic Chemistry (2013) 1, 35-39   (doi:10.1002/ejoc.201201258)

Structural and Phylogenetic Analysis of Rhodobacter capsulatus NifF: Uncovering General Features of Nitrogen-fixation (nif)-Flavodoxins
Pérez-Dorado I., Bortolotti A., Cortez N., Hermoso J.A.
International Journal of Molecular Sciences (2013) 14, 1152-1163  (doi:10.3390/ijms14011152)

Sulfoxide-Directed Enantioselective Synthesis of Functionalized Tetrahydropyridines
Fernández de la Pradilla, R.; Simal, C.; Bates, R.H.; Viso, A.; Infantes, L.
Organic Letters (2013) 15, 4936-4939  (doi:10.1021/ol402141d)

Efficient Light Harvesters based on the 10-(1,3-Dithiol-2-ylidene)anthracene core
Bouit, P.A.; Infantes, L.; Calbo, J.; Viruela, R.; Ortí, E.; Delgado, J.L.; Martín, N.
Organic Letters (2013) 15, 4166-4169  (doi:10.1021/ol401841u)

The Structure and Dynamic Properties of 1H-Pyrazole-4-carboxylic acids in the Solid State
Infantes, L.; García, M.A.; López, C.; Claramunt, R.M.; Elguero, J.
Zeitschrift für Physikalische Chemie (2013) 227, 841-856  (doi:10.1524/zpch.2013.0377)



2012

Bin2 Is a Membrane Sculpting N-BAR Protein That Influences Leucocyte Podosomes, Motility and Phagocytosis
Sánchez-Barrena, M.J., Vallis, Y., Clatworthy, M.R., Doherty, G.J., Veprintsev, D.B., Evans, P.R. and McMahon, H.T.
PLoS One (2012) 7(12), e52401  (doi:10.1371/journal.pone.0052401)

NADP+ Binding to the Regulatory Subunit of Methionine Adenosyltransferase II Increases Intersubunit Binding Affinity in the Hetero-Trimer
Gonzalez, B; Garrido, F; Ortega, R; Martínez-Julvez, M; Revilla-Guarinos, A; Pérez-Pertejos. Y; Velázquez-Campoy, A; Sanz-Aparicio, J; and Pajares, M
PLoS ONE (2012) 7(11), e50329  (doi:10.1371/journal.pone.0050329)

¿Cómo aprendimos a “ver” átomos y moléculas después de von Laue?
Martín Martínez-Ripoll y Pascual Román-Polo
Anales de Química (2012) 108(3), 225–235  [PDF-copy]

Azepane quaternary amino acids as effective inducers of 310 helix conformations
D. Nuñez-Villanueva, L. Infantes, M.T. Garcia-Lopez, R. Gonzalez-Muñiz, M. Martín-Martínez
Journal of Organic Chemistry (2012) 77, 9833-9839   (doi:10.1021/jo301379r)

Structural insights on the plant Salt-Overly-Sensitive 1 (SOS1) Na+/H+ antiporter
Rafael Núñez-Ramírez, María José Sánchez-Barrena, Irene Villalta, Juan F. Vega, Jose M. Pardo, Francisco J. Quintero, Javier Martinez-Salazar and Armando Albert
Journal of Molecular Biology (2012) 424, 283-294  (doi:10.1016/j.jmb.2012.09.015)

The Structural Domains of Pseudomonas aeruginosa Phosphorylcholine Phosphatase Cooperate in Substrate Hydrolysis: 3D Structure and Enzymatic Mechanism
Lourdes Infantes, Lisandro Horacio Otero, Paola Rita Beassoni, Cristhian Boetsch, Angela Teresita Lisa, Carlos Eduardo Domenech and Armando Albert
Journal of Molecular Biology (2012) 423, 503–514  (doi:10.1016/j.jmb.2012.07.024)

Semisynthetic peptide-lipase conjugates for improved biotransformations
O. Romero, M. Filice, B. de las Rivas, C. Carrasco-Lopez, J. Klett, A. Morreale, J.A. Hermoso, J.M. Guisan, O. Abian and J.M. Palomo
Chemical Communications (2012) 48, 9053-9055 (doi:10.1039/C2CC34816K)

Conformational Changes Undergone by Inositol 1,3,4,5,6-Pentakisphosphate 2-Kinase Upon Substrate Binding: The Role of N-lobe and Enantiomeric Substrate Preference
Jose Ignacio Baños-Sanz, Julia Sanz-Aparicio, Hayley Whitfield, Chris Hamilton, Charles A. Brearley and Beatriz Gonzalez
Journal of Biological Chemistry (2012) 287, 29237-29249 (doi:10.1074/jbc.M112.363671)

Pneumococcal surface proteins: when the whole is greater than the sum of its parts
I. Pérez-Dorado, S. Galán-Bartual and J.A. Hermoso
Molecular Oral Microbiology (2012) 27, 221–245  (invited review) (doi:10.1111/j.2041-1014.2012.00655.x)

Crystallization and preliminary X-ray diffraction analysis of the invertase from Saccharomyces cerevisiae
M. A. Sainz-Polo, A. Lafraya, A. Polo, J. Marín-Navarro, J. Polaina and J. Sanz-Aparicio
Acta Crystallographica (2012) F68, 1538-1541  (doi:10.1107/S1744309112044417)

Expression, purification, crystallization and preliminary X-ray diffraction analysis of the apo form of InsP5 2-K from Arabidopsis thaliana
J.I. Baños-Sanz, J. Sanz-Aparicio, C.A. Brearley and  B. González
Acta Crystallographica (2012) F68, 701-704  (doi:10.1107/S1744309112017307)

Structural and kinetic insights reveal that the amino acid pair GLN228/ASN254 modulates the transfructosylating specificity of Schwanniomyces occidentalis β-fructofuranosidase, an enzyme that produces prebiotics
Miguel Alvaro-Benito, M. Angela Sainz-Polo, David Gonzalez-Perez, Beatriz Gonzalez, Francisco J. Plou, Maria Fernandez-Lobato, and Julia Sanz Aparicio
Journal of Biological Chemistry (2012) 287, 19674-19686  (doi:10.1074/jbc.M112.355503)

An analysis of subdomain orientation, conformational change and disorder in relation to crystal packing of aspartic proteinases
D. Bailey, E.P. Carpenter, A. Coker, S. Coker, J. Read, A.T. Jones, P. Erskine, C.F. Aguilar, M. Badasso, L. Toldo, F. Rippmann, J. Sanz-Aparicio, A. Albert, T.L. Blundell, N.B., Roberts, S.P. Wood and J.B. Cooper
Acta Crystallographica (2012) D68, 541-552  (doi: 10.1107/S0907444912004817)

Sagrario Martinez-Carrera (1925-2011)
Martinez-Ripoll, M.
Acta Crystallographica (2012) B68, 213–214  (doi:10.1107/S0108768112003540)

Structural basis of specificity in tetrameric Kluyveromyces lactis β-galactosidase
Pereira-Rodríguez, A; Fernández-Leiro, R; González-Siso, MI; Esperanza Cerdán, M; Becerra, M; Sanz-Aparicio, J
Journal of Structural Biology (2012) 177, 392–401  (doi:10.1016/j.jsb.2011.11.031)

Promiscuous enantioselective (–)-γ-lactamase activity in the Pseudomonas fluorescens esterase I
Leticia Luciana Torres, Marlen Schmidt, Anna Schliessmann, Noella Silva-Martin, Juan Hermoso, José Berenguer, Uwe Bornscheuer and Aurelio Hidalgo
Organic & Biomolecular Chemistry (2012) 10, 3388-3392  (doi: 10.1039/C2OB06887G)



2011

Nobel de Química 2011 a Daniel Shechtman por su descubrimiento de los cuasicristales y de una simetría "imposible"
Julia Sanz-Aparicio
mi+d (2011) published in Análisis Madri+d on 15 Nov. 2011  [PDF-copy]

A Practical Two-Step Synthesis of Imidazo[1,2-a]pyridines from N-(prop-2-yn-1-yl)pyridin-2-amines
D. Sucunza, A. Samadi, M. Chioua, D.B. Silva, C. Yunta, L. Infantes, M.C. Carreiras, E. Soriano, J. Marco-Contelles
Chemical Communications (2011) 47, 5043-5045  (doi:10.1039/C1CC10641D)

Quaternary α,α,-2-Oxoazepane alpha-Amino Acids: Synthesis from Ornithine-Derived β-Lactams and Incorporation into Model Dipeptides
D. Nuñez-Villanueva, M.A. Bonache, L. Infantes, M.T. Garcia-Lopez, M. Martin-Martinez, R. Gonzalez-Muniz
Journal of Organic Chemistry (2011) 76, 6592-6603  (doi:10.1021/jo200894d)

Crystallization and preliminary crystallographic analysis of a C2 protein from Arabidopsis thaliana
Maira Diaz, Lesia Rodriguez, Miguel Gonzalez-Guzman, Martin Martinez-Ripoll and Armando Albert
Acta Crystallographica (2011) F67, 1575–1578  (doi:10.1107/S1744309111040541)

Preliminary X-ray analysis of twinned crystals of the Q88Y25_Lacpl esterase from Lactobacillus plantarum WCFS1
Yanaisis Alvarez, Maria Esteban-Torres, Ivan Acebron, Blanca de las Rivas, Rosario Muñoz, Martin Martinez-Ripoll and Jose M. Mancheño
Acta Crystallographica (2011) F67, 1436–1439  (doi:10.1107/S1744309111036682)

The structure of Arabidopsis thaliana OST1 provides insights into the kinase regulation mechanism in response to osmotic stress
Cristina Yunta, Martín Martínez-Ripoll, Jian-Kang Zhu and Armando Albert
Journal of Molecular Biology (2011) 414, 135–144 (doi:10.1016/j.jmb.2011.09.041)

Fructo-oligosaccharide synthesis by mutant versions of Saccharomyces cerevisiae invertase
Lafraya, A., Sanz-Aparicio, J., Polaina, J. and Marín-Navarro, J.
Applied Environmental Microbiology (2011) 77, 6148-6157 (doi:10.1128/AEM.05032-11)

Crystallization and Preliminary X-Ray Diffraction Analysis of phosphoglycerate kinase from Streptococcus pneumoniae
N. Bernardo-García, S.G. Bartual, M. Fulde, S. Bergmann and J.A. Hermoso
Acta Crystallographica (2011) F67, 1285-1289  (doi:10.1107/S1744309111030922)

Crystallization and Preliminary X-Ray Diffraction Analysis of the transcriptional repressor Paax, the main regulator of the phenylacetic acid degradation pathway in Escherichia coli W.

A. Rojas-Altuve, C. Carrasco-López, V.M. Hernández-Rocamora, J.M. Sanz and J.A. Hermoso
Acta Crystallographica (2011) F67, 1278-1280  (doi:10.1107/S1744309111029873)


Crystal Structures of Bacterial Peptidoglycan Amidase AmpD and an Unprecedented Activation Mechanism
César Carrasco-Lopez, Alzoray Rojas-Altuve,  Welie Zhang,  Dusan Hesek,  Mijoon Lee,  Sophie Barbe, Isabelle André, Pilar Ferrer, Noella Silva-Martín, Germán R. Castro, Martín Martínez-Ripoll, Shahriar Mobashery, and Juan A. Hermoso
Journal of Biological Chemistry (2011) 286, 31714-31722 (doi:10.1074/jbc.M111.264366)

High-resolution structural insights on the sugar-recognition and fusion tag properties of a versatile β-trefoil lectin domain from the mushroom Laetiporus sulphureus
Angulo, I., Acebrón, I., de las Rivas, B., Muñoz, R., Rodríguez-Crespo, I., Menéndez, M., García, P., Tateno, H., Goldstein, I.J., Pérez-Agote, B. and Mancheño, J.M.
Glycobiology (2011) 
21, 1349-1361 (doi:10.1093/glycob/cwr074)

An esterase from Thermus thermophilus HB27 with hyper-thermoalkalophilic properties: purification, characterisation and structural modelling
Fuciños, P., Pastrana, L., Sanromán, A., Longo, M.A., Hermoso, J.A., Rúa M.L.
Journal of Molecular Catalysis B: Enzymatic (2011) 70, 127-137 (doi:10.1016/j.molcatb.2011.02.017)

High-Resolution Crystal Structure of an Outer Membrane-Anchored Endolytic Peptidoglycan Lytic Transglycosylase (MltE) from Escherichia coli
Cecilia Artola-Recolons, Cesar Carrasco-López, Leticia Irene Llarrull, Malika Kumarasiri, Elena Lastochkin, Iñaki Martínez de Ilarduya, Kathrin Meindl, Isabel Usón, Shahriar Mobashery and Juan A. Hermoso
Biochemistry (2011) 50, 2384-2386 (doi:10.1021/bi200085y)

Coordination driven or/and H-bonded Cu(II)-N,N-dialkylisonicotinamide frameworks
Ajay Pal Singh Pannu, Pratibha Kapoor, Geeta Hundal, Ramesh Kapoor, Martin Martinez-Ripoll, Rayond J. Butcher, Maninder Singh Hundal
Polyhedron (2011) 30, 1691-1702  (doi:10.1016/j.poly.2011.03.047)

A self assembled 3-D network propagated by coordination polymerization and H-bonding: synthesis and X-ray crystal structure of [{Co(L)2(H2O)2}(ClO4)2(CH3COCH3)2(H2O)2]n, where L = N,N-diisopropylisonicotinamide
Ajay Pal Singh Pannu, Pratibha Kapoor, Geeta Hundal, Ramesh Kapoor, Martin Martinez-Ripoll and Maninder Singh Hundal
Journal of Coordination Chemistry (2011)  64, 1566-1577 (doi:10.1080/00958972.2011.574286)

SnRK2.6/OST1 from Arabidopsis thaliana: cloning, expression, purification, crystallization and preliminary X-ray analysis of K50N and D160A mutants
Cristina Yunta, Martin Martinez-Ripoll and Armando Albert
Acta Crystallographica (2011) F67, 364–368 (doi:10.1107/S1744309110053807)

Crystallization and Preliminary X-Ray Diffraction Analysis of Lytic Transglycosylase MltE from Escherichia coli
Cecilia Artola-Recolons, Leticia Llarrull, Elena Lastochkin, Shahriar Mobashery and Juan A. Hermoso
Acta Crystallographica (2011) F67, 161-163 (doi:10.1107/S1744309110049171)


New Alkaloid Antibiotics that Target the DNA Topoisomerase I of Streptococcus pneumoniae
Teresa García, María Amparo Blázquez, María José Ferrándiz, María Jesús  Sanz, Noella Silva-Martín, Juan A. Hermoso and Adela G. de la Campa
Journal of Biological Chemistry (2011) 286, 6402-6413  (doi:10.1074/jbc.M110.148148)

The pURI family of expression vectors: A versatile set of ligation independent cloning plasmids for producing recombinant His-fusion proteins.
Curiel, J.A., de Las Rivas., B, Mancheño, J.M., Muñoz, R.
Protein Expression and Purification (2011) 76, 44-53  (doi:10.1016/j.pep.2010.10.013)



2010
 
Crystallographers in Spain
Martín Martínez-Ripoll
IUCr Newsletter (2010) 18(4), 5-13  [PDF-copy]

Crystallography in Spain
Martín Martínez-Ripoll
IUCr Newsletter (2010) 18(3), 5-9  
 [PDF-copy]

Cristalografía en España
Martín Martínez-Ripoll
Anales de Química (2010) 106, 319-329  
 [PDF-copy]

Controlling Optical Properties and Function of BODIPY by Using Asymmetric Substitution Effects
J. Bañuelos-Prieto, A.R. Agarrabeitia, I. García-Moreno, I. López Arbeloa, A. Costela, L. Infantes, M.E. Perez-Ojeda, M. Palacios-Cuesta and M.J. Ortiz
Chemistry European Journal (2010) 16, 14094-14105   (doi:10.1002/chem.201002095)


Biochemical characterization of the transcriptional regulator BzdR from Azoarcus sp. CIB
Durante-Rodriguez, G., Valderrama, A., Mancheño, J.M., Rivas, G., Alfonso, C., Arias-Palomo, E., Llorca, O., Garcia, J.L., Diaz, E., Carmona, M.
Journal of Biological Chemistry (2010) 285, 35694-35705  (doi:10.1074/jbc.M110.143503)

Synthesis of (E)-diethyl 6,60-(diazene-1,2-diyl)bis(5-cyano-2-methyl-4-phenylnicotinates), a new type of 2,20-azopyridine dyesodification of pancreatic lipase properties by directed molecular evolution
Botelho da Silva, D., Samadi, A., Infantes, L., Carreiras, M.C. and Marco-Contelles, J.
Tetrahedron Letters (2010) 51, 6278-6281 (doi:10.1016/j.tetlet.2010.09.095)

Modification of pancreatic lipase properties by directed molecular evolution
Colin, D.Y., Deprez-Beauclair, P., Silva, N., Infantes, L. and Kerfelec, B.
Protein Engineering Design & Selection (2010) 23, 365-373 (doi:10.1093/protein/gzq008)

New insights into the fructosyltransferase activity of Schwanniomyces occidentalis β-fructofuranosidase, emerging from nonconventional codon usage and directed mutation
Alvaro-Benito, M., Abreu, M., Portillo, F., Sanz-Aparicio, J. and Fernández-Lobato, M.
Applied Environmental Microbiology (2010) 76, 7491-7499 (doi:10.1128/AEM.01614-10)
 
Crystallization and preliminary X-ray diffraction analysis of the fructofuranosidase from Xanthophyllomyces dendrorhous
Polo, A., Linde, D., Estévez, M., Fernández-Lobato, M. and Sanz-Aparicio, J.
Acta Crystallographica (2010) F66, 1441-1444 (doi:10.1107/S1744309110029192)

Crystallization and preliminary X-ray diffraction analysis of Pseudomonas aeruginosa phosphorylcholine phosphatase
L.H. Otero, P.R. Beassoni, C.E. Domenech, A.T. Lisa and A. Albert
Acta Crystallographica (2010) F66, 957-960 (doi:10.1107/S1744309110024061)

Structural analysis of Saccharomyces cerevisiae α-galactosidase and its complexes with natural substrates reveals new insights into substrate specificity of GH27 glycosidases
Rafael Fernández-Leiro, Ángel Pereira-Rodríguez, M. Esperanza Cerdán, Manuel Becerra and Juliana Sanz-Aparicio
Journal of Biological Chemistry (2010) 285, 28020-28033 (doi:10.1074/jbc.M110.144584)

Inositol 1,3,4,5,6-pentakisphosphate 2-kinase is a distant IPK member with a singular inositide binding site for axial 2-OH recognition
B. González, J. Baños-Sanz, M. Villate, C. Brearley and J. Sanz-Aparicio
Proceedings of the National Academy of Sciences (2010) 107, 9608-9613  (doi:10.1073/pnas.0912979107)

Insights into pneumococcal fratricide from crystal structure of the modular Killing Factor LytC
Inmaculada Pérez-Dorado, Ana González, María Morales, Reyes Sanles, Waldemar Striker, Waldemar Vollmer, Shahriar Mobashery, José L. García, Martín Martínez-Ripoll, Pedro García and Juan A. Hermoso
Nature Structural & Molecular Biology (2010) 17, 576-582 (doi:10.1038/nsmb.1817)

Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli
Grazú V., López-Gallego F., Montes T., Abian O., González R., Hermoso J.A., García J.L., Mateo C. and Guisán J.M. 
Process Biochemistry (2010) 45, 390-398  (doi:10.1016/j.procbio.2009.10.013)

Pneumococcal CbpD is a murein hydrolase that requires a dual cell envelope binding specificity to kill target cells during fratricide
Vegard Eldholm, Ola Johnsborg, Daniel Straume, Hilde Solheim Ohnstad, Kari Helene Berg, Juan A. Hermoso and Leiv Sigve Håvarstein
Molecular Microbiology (2010) 
76, 905-917 (doi:10.1111/j.1365-2958.2010.07143.x)

Crystallization and preliminary crystallographic analysis of the catalytic module of endolysin from Cp-7, a phage infecting Streptococcus pneumoniae
Noella Silva-Martin, Rafael Molina, Ivan Angulo, José M. Mancheño, Pedro García and Juan A. Hermoso
Acta Crystallographica (2010) F66, 670–673  (doi:10.1107/S1744309110006718)

Crystallization of the pneumococcal autolysin LytC: in-house phasing using novel lanthanide complexes
I. Pérez-Dorado, R. Sanles, A. González, P. García, J.L. García, M. Martínez-Ripoll and J.A. Hermoso
Acta Crystallographica (2010) F66, 448-451 (doi:10.1107/S1744309110006081)

Oligomeric State in the Crystal Structure of Modular FAD Synthetase Provides Insights into Its Sequential Catalysis in Prokaryotes
Beatriz Herguedas, Marta Martínez-Júlvez, Susana Frago, Milagros Medina and Juan A. Hermoso
Journal of Molecular Biology (2010) 400, 218–230  (doi:10.1016/j.jmb.2010.05.018)


p-Coumaric acid decarboxylase from Lactobacillus plantarum: Structural insights into the active site and decarboxylation catalytic mechanism
Héctor Rodríguez, Iván Angulo, Blanca de las Rivas, Nuria Campillo, Juan A. Páez, Rosario Muñoz and José M. Mancheño
Proteins: Structure, Function, and Bioinformatics (2010) 78, 1662-1676 (doi:10.1002/prot.22684)


Laetiporus sulphureus Lectin and Aerolysin Protein Family
Jose Miguel Mancheño, Hiroaki Tateno, Daniel Sher and Irwin J. Goldstein
in
Proteins: Membrane Binding and Pore Formation (2010), Chp. 6, pp. 67-80. Gregor Anderluh and Jeremy Lakey, Eds., Landes Bioscience. ISBN: 978-1-4419-6326-0. See also Advances in Experimental Medicine and Biology (2010) 677, 67-80

Structural and kinetic analysis of Schwanniomyces occidentalis invertase reveals a new oligomerization pattern and the role of its supplementary domain in substrate binding

Alvaro-Benito, M., Polo, A., González, B., Fernández-Lobato, M. and Sanz-Aparicio, J.
Journal of Biological Chemistry (2010) 285, 13930-13941 (doi:10.1074/jbc.M109.095430)

Structure of GroEL in Complex with an Early Folding Intermediate of Alanine Glyoxylate Aminotransferase
Armando Albert, Cristina Yunta, Rocío Arranz, Álvaro Peña, Eduardo Salido, José María Valpuesta and Jaime Martín-Benito 
Journal of Biological Chemistry (2010) 285, 6371-6376  (doi:10.1074/jbc.M109.062471)

Crystallization and preliminary X-ray crystallographic analysis of β-galactosidase from Kluyveromyces lactis
Pereira-Rodríguez, A. Fernández-Leiro, R., González-Siso, M., Cerdán, E., Becerra, M. and Sanz-Aparicio, J. 
Acta Crystallographica (2010) F66, 297-300 (doi:10.1107/S1744309109054931)

Crystallization and preliminary X-ray diffraction analysis of inositol 1,3,4,5,6-pentakisphosphate kinase from Arabidopsis thaliana
Baños-Sanz, J.I., Villate, M., Sanz-Aparicio, J., Brearley, C.A. and González B.
Acta Crystallographica (2010) F66, 102-106  (doi:10.1107/S1744309109051057)

Crystallization and preliminary X-ray diffraction analysis of α-galactosidase from Saccharomyces cerevisiae
Fernández-Leiro, F., Pereira, A., Cedán, E. Becerra-Fernández, M. and Sanz-Aparicio, J.
Acta Crystallographica (2010) F66, 44-47  (doi:10.1107/S1744309109047794)

Structural insights into the specificity of Xyn10B from Paenibacillus barcinonensis and its improved stability by forced protein evolution
Gallardo, O. Pastor, F.J., Polaina, J., Díaz, P., Vogel, P. Isorna, P., González-Pérez, B. and Sanz-Aparicio, J.
Journal of Biological Chemistry (2010) 285, 2721-2733  (doi:10.1074/jbc.M109.064394)



2009
 
Sticholysins, two pore-forming toxins produced by the Caribbean Sea anemone Stichodactyla helianthus: their interaction with membranes
C. Alvarez, J.M. Mancheño, D. Martínez, M. Tejuca, F. Pazos and M.E. Lanio
Toxicon (2009) 54, 1135-1147 (doi:10.1016/j.toxicon.2009.02.022)


Food phenolics and lactic acid bacteria
H. Rodriguez, J.A. Curiel, J.M. Landete, B. de las Rivas, F. López de Felipe, C. Gómez-Cordovés, J.M. Mancheño and R. Muñoz
International Journal of Food Microbiology (2009) 132, 79-90  (doi:10.1016/j.ijfoodmicro.2009.03.025)


Production and physicochemical properties of recombinant Lactobacillus plantarum tannase
J.A. Curiel, H. Rodríguez, I. Acebrón, J.M. Mancheño, B. de Las Rivas and R. Muñoz
Journal of Agricultural and Food Chemistry (2009) 57, 6224-6230  (doi:10.1021/jf901045s)

Crystal structure of the hexameric catabolic ornithine transcarbamylase from Lactobacillus hilgardii: Structural insights into the oligomeric assembly and metal binding
B. de Las Rivas,
G.C. Fox, I. Angulo, M. Martinez-Ripoll, H. Rodríguez, R. Muñoz and J.M. Mancheño
Journal of Molecular Biology (2009) 393, 425-434  (doi:10.1016/j.jmb.2009.08.002)

Crystallization and preliminary X-ray diffraction studies of the FAD synthetase from Corynnebacterium ammoniagenes

Beatriz Herguedas, Marta Martínez-Júlvez, Milagros Medina and Juan A. Hermoso
Acta Crystallographica (2009) F65, 1285-1288  (doi:10.1107/S1744309109044789)


Crystallization and preliminary X-ray diffraction studies of the carbohydrate recognition domain of SIGN-R1, a receptor for microbial polysaccharides and sialylated antibody on splenic marginal zone macrophages

N. Silva-Martin, J.D. Schauer, C.G. Park and J.A. Hermoso
Acta Crystallographica (2009) F65, 1264-1266
(doi:10.1107/S1744309109041992)

Crystallization and preliminary X-ray diffraction analysis of the fructofuranosidase from Schwanniomyces occidentalis
Polo-Rivas, A. Alvaro-Benito, A., Fernández-Lobato, M. and Sanz-Aparicio, J.
Acta Crystallographica (2009) F65, 1162-1165  (doi:10.1107/S174430910903938)


Discovery of specific flavodoxin inhibitors as potential therapeutic agents against Helicobacter pylori infection

Nunilo Cremades, Adrián Velázquez-Campoy, Marta Martínez-Júlvez, José L. Neira, Inmaculada Pérez-Dorado, Juan Hermoso, Pilar Jiménez, Angel Lanas, Paul S. Hoffman and Javier Sancho
ACS Chemical Biology (2009) 4, 928-938  (doi:
10.1021/cb900166q)

Cloning, production, purification and preliminary crystallographic analysis of a glycosidase from the food lactic acid bacterium Lactobacillus plantarum CECT 748T

Iván Acebrón, José A. Curiel, Blanca de las Rivas, Rosario Muñoz, José M. Mancheño
Protein Expression and Purification (2009) 68, 177-182 (doi:10.1016/j.pep.2009.07.006)

Characterization of gadolinium complexes for SAD phasing in macromolecular crystallography: application to CbpF
Rafael Molina, Meike Stelter, Richard Kahn and Juan A. Hermoso
Acta Crystallographica (2009) D65, 823–831 (doi:10.1107/S0907444909017958)

Protein Motifs Involved in Coenzyme Interaction and Enzymatic Efficiency in Anabaena Ferredoxin–NADP+ Reductase
José Ramón Peregrina, Beatriz Herguedas, Juan A. Hermoso, Marta Martínez-Júlvez and Milagros Medina
Biochemistry (2009) 48, 3109-3119 (doi:10.1021/bi802077c)

Crystal structure of CbpF, a bifunctional choline-binding protein and autolysis regulator from Streptococcus pneumoniae
Rafael Molina, Ana González, Meike Stelter, Inmaculada Pérez-Dorado, Richard Kahn, María Morales, Susana Campuzano, Nuria E. Campillo, Shahriar Mobashery, José L. García, Pedro García and Juan A. Hermoso
EMBO Reports (2009) 10, 246-251 (doi:10.1038/embor.2008.245)

Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements
Cesar Carrasco-López, Cesar Godoy, Blanca de las Rivas, Gloria Fernandez-Lorente, Jose M. Palomo, José M. Guisán, Roberto Fernández-Lafuente, Martín Martínez-Ripoll and Juan A. Hermoso
Journal of Biological Chemistry (2009) 284, 4365-4372 (doi:10.1074/jbc.M808268200)


Coenzyme binding and hydride transfer in Rhodobacter capsulatus ferredoxin/flavodoxin NADP(H) oxidoreductase
Ana Bortoloti, Inmaculada Pérez-Dorado, Guillermina Goñi, Milagros Medina, Juan A. Hermoso, Néstor Carrillo and Néstor Cortez
Biochimica et Biophysica Acta - Proteins & Proteomics (2009) 1794, 199-210 (doi:10.1016/j.bbapap.2008.09.013)

Flavodoxin: A compromise between efficiency and versatility in the electron transfer from Photosystem I to Ferredoxin-NADP+ reductase
Guillermina Goñi, Beatriz Herguedas, Manuel Hervás, José R. Peregrina, Miguel A. de la Rosa, Carlos Gómez-Moreno, José A. Navarro, Juan A. Hermoso, Marta Martínez-Júlvez and Milagros Medina
Biochimica et Biophysica Acta - Bioenergetics (2009) 1787, 144–154
(doi:10.1016/j.bbabio.2008.12.006)

Further Evidence for 2-Alkyl-2-carboxyazetidines as γ-Turn Inducers
J.L. Baeza, G. Gerona-Navarro, K. Thompson, M.J. Prez de Vega, L. Infantes, M.T. García-Lopez, R. Gonzalez-Muñiz and M. Martin-Martinez
Journal of Organic Chemistry (2009) 74, 8203-8211  (doi:10.1021/jo901712x)

 
Molecular Crystal Prediction Approach by Molecular Similarity: Data Mining on Molecular Aggregation Predictors and Crystal descriptors
J. Fayos
Crystal Growth and Design (2009) 9, 3142-3153  (doi:10.1021/cg801122m)
 

 
2008


Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases
Apsel B., Blair J.A., Gonzalez B., Nazif T.M., Feldman M.E., Aizenstein B., Hoffman R., Williams R.L., Shokat K.M. and Knight Z.A.
Nature Chemical Biology (2008) 4, 691-699 (doi:10.1038/nchembio.117)

Crystallization and preliminary X-ray diffraction studies of the BTL2 lipase from extremophilic microorganism Bacillus thermocatenulatus
César Carrasco-López, César Godoy, Blanca de las Rivas, Gloria Fernández-Lorente, José M. Palomo, José M. Guisán, Roberto Fernández-Lafuente, Martín Martínez-Ripoll and Juan A. Hermoso
Acta Crystallographica (2008) F64, 1043-1045
 (doi:10.1107/S1744309108031928)

A one-pot, simple methodology for cassette randomisation and recombination for focused directed evolution
Aurelio Hidalgo, Anna Schliessmann, Rafael Molina, Juan Hermoso and Uwe T. Bornscheuer
Protein Engineering, Design & Selection (2008) 21(9), 567-576  [PDF-copy]

Solid-Phase Chemical Amination of a Lipase from Bacillus thermocatenulatus To Improve Its Stabilization via Covalent Immobilization on Highly Activated Glyoxyl-Agarose
Gloria Fernandez-Lorente, Cesar A. Godoy, Adriano A. Mendes, Fernando Lopez-Gallego, Valeria Grazu, Blanca de las Rivas, Jose M. Palomo, Juan Hermoso, Roberto Fernandez-Lafuente, and Jose M. Guisan
Biomacromolecules (2008) 9, 2553–2561  
[PDF-copy]

Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748(T)
Rodríguez, H., Landete, J.M., Curiel, J.A., de Las Rivas, B., Mancheño, J.M., Muñoz, R.
Journal of Agricultural and Food Chemistry (2008) 56, 3068-3072 (doi:10.1021/jf703779s)

Las enzimas líticas de los bacteriófagos (Enzibióticos): Nuevas terapias contra las infecciones bacterianas
Hermoso, J.A.
MADRI+D (2008), Abril 29th [Web-access]

Los enzibióticos progresan en un momento clave
Hermoso, J.A.
Diario Médico (2008) 16 mayo, 16-17  [PDF-copy]

Structural characterization of a ferredoxin-NADP(H) reductase and a flavodoxin from Rhodobacter capsulatus by X-ray crystallography
Inmaculada Pérez-Dorado, Ana Bortolotti, Néstor Cortez and Juan A. Hermoso
in Flavins and Flavoproteins (2008). S. Frago, C. Gómez-Moreno and M. Medina Eds. (2008). 261-267. ISBN: 978-84-7733-017-2

The coenzyme binding site of bacterial ferredoxin/flavodoxin-NADP(H) reductases
Inmaculada Pérez-Dorado, Juan A. Hermoso, Guillermina Goñi, Milagros Medina, Ana Bortolotti, Néstor Carrillo, and Néstor Cortez
in Flavins and Flavoproteins (2008). S. Frago, C. Gómez-Moreno and M. Medina Eds. (2008). 267-273. ISBN: 978-84-7733-017-2

Crystallization and preliminary crystallographic analysis of merohedrally twinned crystals of MJ0729, a CBS-domain protein from Methanococcus jannaschii
P. Fernández-Millán, D. Kortazar, M. Lucas, M.L. Martínez-Chantar, E. Astigarraga, J.A. Fernández, O. Sabas, A. Albert, J.M. Mato and L.A. Martínez-Cruz
Acta Crystallographica (2008) F64, 605-609

Crystallization of a flavodoxin involved in the nitrogen fixation in Rhodobacter capsulatus

I. Pérez-Dorado, A. Bortolotti, N. Cortez and J.A. Hermoso
Acta Crystallographica (2008) F64, 375-377



2007

The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3
María José Sánchez-Barrena, Hiroaki Fujii, Ivan Angulo, Martín Martínez-Ripoll, Jian-Kang Zhu and Armando Albert
Molecular Cell (2007) 26, 427-435 (doi:10.1016/j.molcel.2007.04.013)

Taking aim on bacterial pathogens: from phage therapy to enzybiotics
Juan A. Hermoso, José L García, Pedro García
Current Opinion in Microbiology (2007) 10(5), 461-472 (doi:10.1016/j.mib.2007.08.002)

Enhancement of the Stability of a Prolipase from Rhizopus oryzae Towards Aldehydes by Saturation Mutagenesis
Mirella Di Lorenzo, Aurelio Hidalgo, Rafael Molina, Juan A. Hermoso, Guido Greco and Uwe T. Bornscheuer
Applied and Environmental Microbiology (2007) 73(22), 7291-7299

Crystallization and preliminary X ray diffraction studies of the Choline Binding Protein F from Streptococcus pneumoniae
Rafael Molina, Ana González, Miriam Moscoso, Pedro García, Meike Stelter, Richard Kahn and Juan A. Hermoso
Acta Crystallographica (2007) F63, 742-745 (doi:10.1107/S1744309107035865)

The complex between SOS3 and SOS2 regulatory domain from Arabidopsis thaliana: Cloning, expression, purification, crystallization and preliminary X-ray analysis
Sánchez-Barrena, M.J., Moreno-Pérez, S., Angulo, I., Martínez-Ripoll, M. and Albert, A.
Acta Crystallographica (2007) F63, 568-570  (doi:10.1107/S174430910702533X)


Tuning of the FMN binding and oxido-reduction properties by neighboring side chains in Anabaena Flavodoxin
S. Frago, G. Goñi, B. Herguedas, J.R. Peregrina, A. Serrano, I. Perez-Dorado, R. Molina, C. Gómez-Moreno, J.A. Hermoso, M. Martínez-Júlvez, S. G. Mayhew and M. Medina
Archives of Biochemistry and Biophysics (2007) 467, 206-217

Elucidation of the Molecular Recognition of Bacterial Cell Wall by Modular Pneumococcal Phage Endolysin Cpl-1
Pérez-Dorado, N.E. Campillo, B. Monterroso, D. Hesek, M. Lee, J.A. Páez, P. García, M. Martínez-Ripoll, J.L. García, S. Mobashery, M. Menéndez and J.A. Hermoso
Journal of Biological Chemistry (2007) 282, 24990-24999

Common conformational changes in flavodoxins induced by FMN and anion binding: The structure of Helicobacter pylori apoflavodoxin
M Martínez-Júlvez, N Cremades, M Bueno, I Pérez-Dorado, C Maya, S Cuesta-López, D Prada, F Falo, J.A. Hermoso and. J Sancho
Proteins: Structure, Function and Bioinformatics (2007) 69, 581-594

Genetic Modification of the Penicillin G Acylase Surface To Improve Its Reversible Inmobilization on Ionic Exchangers
Tamara Montes, Valeria Grazu, Fernando López-Gallego, Juan A. Hermoso, José L. García, Isabel Manso, Beatriz Galán, Ramón González, Roberto Fernández-Lafuente and José M. Guisán
Applied and Environmental Microbiology (2007) 73(1), 312-319

Improved stabilization of genetically modified Penicillin G Acylase in the presence of organic cosolvents by co-immobilization of the enzyme with polyethylenimine
Tamara Montes, Valeria Grazu, Isabel Manso, Beatriz Galán, Ramón González, Fernando López-Gallego, Juan A. Hermoso, José L. garcía, José M. Guisán and Roberto Fernández-Lafuente
Adv. Synth. Catal. (2007) 349, 459-464

Insights into molecular plasticity of choline binding proteins (pneumococcal surface proteins) by SAXS
Rubén M. Buey, Begoña Monterroso, Margarita Menéndez, Greg Diakun, Pablo Chacón, Juan Antonio Hermoso and J. Fernando Díaz
Journal of Molecular Biology, (2007), 365 (2), 411-424

Mixed ion exchangers supports as useful ion exchangers for protein purification. Purification of penicillin G acylase from E.coli
Manuel Fuentes, Pilar Batalla, Valeria Grazu, Benevides C.C. Pessela, Cesar Mateo, Tamara Montes, Juan A. Hermoso, José M. Guisán and Roberto Fernández-Lafuente
Biomacromolecules (2007) 8(2), 703-707

Insights into the activation of brain serine racemase by the multi-PDZ domain glutamate receptor interacting protein, divalent cations and ATP
Baumgart, F,  Mancheño JM, Rodríguez-Crespo, I
FEBS J. (2007) 274(17), 4561-4571

Overexpression, purification, crystallization and preliminary structural studies of catabolic ornithine transcarbamylase from Lactobacillus hilgardii
de las Rivas, B, Rodríguez, H, Angulo, I, Muñoz, R, Mancheño JM
Acta Crystallographica (2007) F63, 563-567

Expression vectors for enzyme restriction- and ligation-independent cloning for producing recombinant His-fusion proteins
de las Rivas, B, Curiel, JM., Mancheño JM, Muñoz, R
Biotechnol. Prog. (2007) 23, 680-686

Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum
Rodríguez, H, de las Rivas, B, Muñoz, R, Mancheño, JM
Acta Crystallographica (2007) F63, 300-303

Crystal structures of Paenibacillus polymyxa β-glucosidase B complexes reveal the molecular basis of substrate specificity and give insights into the catalytic mechanism of family I glycosidases
Isorna, P., Polaina, J., Latorre-García. L., Cañada, F.J., González, B. y Sanz-Aparicio, J.
Journal of Molecular Biology (2007) 371, 1204-1218

Xylanases: Molecular properties and applications
Pastor, F.J., Gallardo, O., Sanz-Aparicio, J. y Díaz, P.
in Industrial Enzymes: Structure, Function and Applications (2007) Chpt. 5, 65-82, Springer NL,  Polaina, Julio; MacCabe, Andrew P. (Eds.), XII, 642 p., Hardcover. ISBN: 978-1-4020-5376-4



2006

A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling
Knight Z.A., González B.,  Feldman M.E., Zunder E.R., Goldenberg D.D., Williams O., Loewith R., Stokoe D., Balla A., Toth B., Balla T.,  Weiss W.A., Williams R.L. and Shokat K.M.
Cell (2006) 125, 733-747    
[PDF-copy]

The role of electrostatic interactions in the antitumor activity of dimeric Rnases
Notomista, E, Mancheño JM, Crescenzi, O, Di Donato A, Gavilanes, JG, D´Alessio, G
FEBS J. (2006) 273, 3687-3697

A complementary microscopy analysis of Sticholysin II crystals on lipid films: Atomic Force and Transmission Electron characterizations
Mancheño JM, Martín-Benito J, Gavilanes JG, Vázquez L
Biophys. Chem. (2006) 119(3), 219-223

Chemical modification of the protein surfaces to improve their reversible enzyme immobilization on ionic exchangers
Tamara Montes, Valeria Grazu, Fernando López-Gallego, Juan A. Hermoso, José M. Guisán and Roberto Fernández-Lafuente
Biomacromolecules (2006). 7, 3052-3058

Cell signaling and function organized by PB1 domain interactions
Moscat, J., Diaz-Meco, M.T., Albert, A. and Campuzano, S.
Molecular Cell (2006) 23, 631-640    [PDF-copy]

X-ray and Neutron Diffraction Approaches to the Structural Analysis of Protein-Lipids Interactions
Juan A. Hermoso, José M. Mancheño and Eva Pebay-Peyroula
in Protein-Lipid Interactions. New Approaches and Emerging Concepts (2006). Springer Verlag Berlin Heidelberg, pp.63-100

La Quimica de la vida a escala atomica
Hermoso, J.A., Sanz-Aparicio, J.A. and Albert, A.
Anales de Química (2006) 102(4), 15-22   [PDF-copy]



2005

Insights into pneumococcal pathogenesis from crystal structure of the modular teichoic acid phosphorylcholine esterase Pce
Hermoso, J., Lagartera, L., Gonzalez, A., Stelter, M., Garcia, P., Martinez-Ripoll, M., Garcia, J.L. and Menendez, M.
Nature Structural and Molecular Biology (2005) 12, 533-538  (doi:10.1038/nsmb940)

C-terminal Tyrosine of Ferredoxin-NADP+ reductase in the hydride transfer processes with NAD(P)+/H
J. Tejero, I. Pérez-Dorado, C. Maya, M. Martínez-Júlvez, J. Sanz-Aparicio, C. Gómez-Moreno, J.A. Hermoso and M. Medina
Biochemistry (2005) 44, 13477-13490

Structure of the functional domain of phi 29 replication organizer
J.L. Asensio, A. Albert, D. Muñoz-Espín, C. González, J. Hermoso, L. Villar, J. Jiménez-Barbero, M. Salas, and W.J.J. Meijer
Journal of Biological Chemistry (2005) 280, 20730-20739

Hydralysins: A new category of beta-pore-forming toxins in cnidaria. Characterization and preliminary structure-function analysis
Sher DJ, Fishman Y, Zhang M, Lebendiker M, Gaathon A, Mancheño JM, Zlotkin E
J. Biol. Chem. (2005) 280(24), 22847-22855

BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators
Barragán MJ, Blázquez B, Zamarro MT, Mancheño JM, García JL, Díaz E, Carmona M
J. Biol. Chem. (2005) 280(11), 10683-10694

The 1.49 A resolution crystal structure of PsbQ from photosystem II of Spinacia oleracea reveals a PPII structure in the N-terminal region
Balsera. M., Arellano, J.B., Revuelta, J.L., de las Rivas, J. and Hermoso, J.
Journal of Molecular Biology (2005). 350, 1051-1060

Crystallization and preliminary X-ray diffraction studies of the pneumococcal teichoic acid phosphorylcholine esterase Pce
Lagartera, L., Gonzalez, A., Stelter, M., Garcia, P., Kahn, R., Menendez, M. and Hermoso, J.
Acta Crystallographica (2005) F61, 221-224  (doi:10.1107/S1744309105001636)

Conformational engineering of lipases via directed immobilization. Improving the resolution of chiral drugs
J.M Palomo, G. Fernández-Lorente, C. Ortiz, R. L. Segura, C. Mateo, M. Fuentes, J. Hermoso, R. Fernández- Lafuente and J. M Guisán
Medicinal Chemistry reviews-online (2005) 2(5), 369-378   [Web-access]

Structural Analysis of the Laetiporus sulphureous Hemolytic Pore-forming Lectin in Complex with Sugars
Mancheño, J.M., Tateno, H., Goldstein, I.J., Martínez-Ripoll, M. and Hermoso, J.A.
Journal of Biological Chemistry (2005) 280, 17251-17259

Activation in the family of Candida rugosa isolipases by polyethylene glycol
Otero, C., Fernández-Pérez, M., Hermoso, J.A. and Martínez-Ripoll, M.
Journal of Molecular Catalysis B: Enzymatic (2005) 32, 225-229

Structural Analysis of Interactions for Complex Formation between Ferredoxin-NADP+ Reductase and Its Protein Partners
Mayoral, T., Martinez-Julvez, M., Perez-Dorado, I., Sanz-Aparicio, J., Gomez-Moreno, C., Medina, M. and Hermoso, J.A.
Proteins: Structure, Function, and Bioinformatics (2005) 59, 592-602

Pneumococcal phosphorylcholine esterase, Pce, contains a zinc binuclear center that is essential for substrate binding and catalysis
L. Lagartera, A. González, J. A. Hermoso, J. L. Saíz, P. García, J. L. García and M. Menéndez
Protein Science (2005) 14, 3013-3024  (doi:10.1110/ps.051575005)

The Ferredoxin-NADP(H) Reductase from Rhodobacter capsulatus: Molecular Structure and Catalytic Mechanism
I. Nogués, I. Pérez-Dorado, S. Frago, C. Bittel, S. G. Mayhew, C. Gómez-Moreno, J. A. Hermoso, M. Medina, N. Cortez, and N. Carrillo
Biochemistry (2005) 44, 11730-11740

Probing the Determinants of Substrate Specificity of a Feruloyl Esterase, AnFaeA, from Aspergillus niger
C.B. Faulds, R. Molina, R. Gonzalez, F. Husband, N. Juge, J. Sanz-Aparicio and J. A. Hermoso
FEBS Journal (2005) 272, 4362-4371

The structure of the functional dimeric domain of phage f29 protein p16.7 reveals mechanisms for oligomerization and DNA binding
Asensio, JL, Albert, A, Muñoz-Espín, D, González, C, Hermoso, JA, Villar, L, Jiménez-Barbero, J, Salas, M and Meijer, W
Journal of Biological Chemistry (2005) 280, 20730-20739

Structural basis for membrane anchorage of viral phi 29 DNA during replication
Albert A, Munoz-Espin D, Jimenez M, Asensio JL, Hermoso JA, Salas M, Meijer WJ.
Journal of Biological Chemistry (2005) 280, 42486-42489

The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response
Sánchez-Barrena, M.J., Martínez-Ripoll, M., Zhu, J.K. and Albert, A.
Journal of Molecular Biology (2005) 345, 1253-1264   (doi:10.1016/j.jmb.2004.11.025)

Rat liver betaine homocysteine S-methiltransferase equilibrium unfolding: Insights into intermediate structure through tryptophan substitutions
Garrido, F., Gasset, M., Sanz-Aparicio, J., Alfonso, C. and Pajares, M.A.
Biochemical Journal (2005) 391, 589-599



2004

ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes
Teo H., Perisic O., González B. and Williams R.L.
Developmental Cell (2004) 7, 559-569 
(doi:10.1016/j.devcel.2004.09.003)

The structure of human inositol 1,4,5-trisphosphate 3-kinase: The substrate binding reveals why it is not a phosphoinositide 3-kinase
González B., Schell M.J., Letcher, A.J., Veprintsev, D.B., Irvine R. and Williams R.L.
Molecular Cell (2004) 15,689-701  
(doi:10.1016/j.molcel.2004.08.004)

SOS3 (salt overlay sensitive 3) from Arabidopsis thaliana: expression, purification, crystallization and preliminary X-ray analysis
Sánchez-Barrena, M.J., Martínez-Ripoll, M., Zhu, J.K. and Albert, A.
Acta Crystallographica (2004) D60, 1272-1274   (doi:10.1107/S0907444904008728)

Structure of concanavalin A at pH 8: bound solvent and crystal contacts
Lopez-Jaramillo FJ, Gonzalez-Ramirez LA, Albert A, Santoyo-Gonzalez F, Vargas-Berenguel A, Otalora F
Acta Crystallographica (2004) D60, 1048-1046  (doi:10.1107/S0907444904007000)

Peptide AS-48: prototype of a new class of cyclic bacteriocins
Maqueda M, Galvez A, Bueno MM, Sanchez-Barrena MJ, Gonzalez C, Albert A, Rico M, Valdivia E.
Current Protein and Peptide Science (2004) 5, 399-416   (doi:10.2174/1389203043379567)

Crystallization and preliminary crystallographic analysis of a novel haemolytic lectin from the mushroom Laetiporus sulphureus
Mancheño, J.M., Hiroaki, T., Goldstein, I.J. and Hermoso, J.A.
Acta Crystallographica (2004) D60, 1139-1141  (doi:10.1107/S0907444904007991)

Crystallization of a proteolyzed form of the horse pancreatic lipase-related protein 2: structural basis for the specific detergent requirement
Mancheño, J.M., Jayne, S., Kerfelec, B., Chapus, C., Crenon, I. and Hermoso, J.A.
Acta Crystallographica (2004) D60, 2107-2109  (doi:10.1107/S0907444904024229)

Crystallization and preliminary X-ray diffraction analysis of ferredoxin-NADP(H) reductase from Rhodobacter capsulatus
Perez-Dorado. I., Bittel, C., Cortez, N. and Hermoso, J.A.
Acta Crystallographica (2004) D60, 2332-2335  (doi:10.1107/S090744490402640X)

Stabilization of Penicillin G Acylase from Escherichia coli: Site-Directed Mutagenesis of the Protein Surface To Increase Multipoint Covalent Attachment
Abian, O., Grazu, V., Hermoso, J.A., Gonzalez, R., Garcia, J.L., Fernandez-Lafuente, R. and Guisan, J.M.
Applied and Environmental Microbiology (2004) 70, 1249-1251  (doi:10.1128/AEM.70.2.1249-1251.2004)

Phenotypic selection and characterization of randomly produced non-haemolytic mutants of the toxic sea anemone protein Sticholysin II
Alegre-Cebollada, J, Lacadena, V, Oñaderra, M, Mancheño, JM, Gavilanes JG, Martínez del Pozo, A
FEBS Lett. (2004) 575, 14-18  (doi:10.1016/j.febslet.2004.08.031)

The Crystal Structure of Feruloyl Esterase A from Aspergillus niger Suggests Evolutive Functional Convergence in Feruloyl Esterase Family
Hermoso, J.A., Sanz-Aparicio, J., Molina, R., Juge, N., Gonzalez, R. and Faulds, C.B.
Journal of Molecular Biology (2004) 338, 495-506  (doi:10.1016/j.jmb.2004.03.003)

Functional characterization of the yeast Ppz1 phosphatase inhibitory subunit Hal3: a mutagenesis study
Muñoz, I, Ruiz, A, Marquina, M, Barcelo, A, Albert, A, Ariño, J.
Journal of Biological Chemistry (2004) 279, 42619-42627  (doi:10.1074/jbc.M405656200)



2003

Estructura de proteínas por Cristalografía de rayos X
Hermoso, J.A. y Martínez-Ripoll, M.
in Estructura de proteínas (2003). Gómez-Moreno, C. and Sancho Sanz, J., coord., Ariel Ciencia, ISBN: 84-344-8061-6, pp. 253-285

Crystallization and preliminary X-ray diffraction studies of two different crystal forms of the lipase 2 isoform from the yeast Candida rugosa
Mancheño, J.M., Pernas, M.A., Rua, M.L. and Hermoso, J.A.
Acta Crystallographica (2003) D59, 499-501

Structural aspects on rat liver S-adenosylmethionine synthesis
Pajares, M.A., Gasset, M., Sanz-Aparicio, J., Calvete, J.J. and Rodriguez Arrondo, J.L.
Advances in Biological Chemistry (2003) 2, 31-41

Active-site-mutagenesis study of rat liver betaine-homocysteine S-methyltransferase
González, B., Campillo, N., Garrido, F., Gasset, M., Sanz-Aparicio, J. and Pajares, M.A.
Biochem. J. (2003) 370, 945-952

Involvement of the Pyrophosphate and the 2'-Phosphate Binding Regions of Ferredoxin-NADP+ Reductase in Coenzyme Specificity
Tejero, J., Martinez-Julvez, M., Mayoral, T., Luquita, A., Sanz-Aparicio, J., Hermoso, J.A., Hurley, J.K., Tollin, G., Gómez-Moreno, C. and Medina, M.
Journal of Biological Chemistry (2003) 278, 49203-49214

Structure of Bacteriocin AS-48: From Soluble State to Membrane Bound State
Sánchez-Barrena, M.J., Martinez-Ripoll, M., Gálvez, A., Valdivia, E., Maqueda, M., Cruz, V. and Albert, A.
Journal of Molecular Biology (2003) 334, 541-549   (doi:10.1016/j.jmb.2003.09.060) 

Structural Insights into the Lipase/esterase Behavior in the Candida rugosa Lipases Family: Crystal Structure of the Lipase 2 Isoenzyme at 1.97 A Resolution
Mancheño, J.M., Pernas, M.A., Martínez, M.J., Ochoa, B., Rúa, M.L. and Hermoso, J.A.
Journal of Molecular Biology (2003) 332, 1059-1069

Crystal Structures of Methionine Adenosyltransferase Complexed with Substrates and Products Reveal the Methionine-ATP Recognition and Give Insights into the Catalytic Mechanism
González, B., Pajares, M.A., Hermoso, J.A., Guillerm, D., Guillerm, G. and Sanz-Aparicio, J.
Journal of Molecular Biology (2003) 331, 407-416

Structural Basis for Selective Recognition of Pneumococcal Cell Wall by Modular Endolysin from Phage Cp-1
Hermoso, J.A., Monterroso, B., Albert, A., Galán, B., Ahrazem, O., García, P., Martínez-Ripoll, M., García, J.L., and Menéndez, M.
Structure (2003) 11, 1239-1249

Crystal and Electron Microscopy Structures of Sticholysin II Actinoporin Reveal Insights into the Mechanism of Membrane Pore Formation.
Mancheño, J.M., Martín-Benito, J., Martínez-Ripoll, M., Gavilanes, J.G. and Hermoso, J.A.
Structure (2003) 11, 1319-1328



2002

Crystallization and preliminary X-ray study of recombinant betaine-homocysteine S-methyltransferase from rat liver
González, B., Pajares, M.A., Too, H.-P., Garrido, F., Blundell, T.L. and Sanz-Aparicio, J.
Acta Crystallographica (2002) D58, 1507-1510

Crystallization and preliminary X-ray diffraction studies of the complete modular endolysin from Cp-1, a phage infecting Streptococcus pneumoniae
Monterroso, B., Albert, A., Martínez-Ripoll, M., García, P., García, J.L., Menéndez, M. and Hermoso, J.A.
Acta Crystallographica (2002) D58, 1487-1489

Crystallization and preliminary X-ray diffraction studies of the water-soluble state of the pore-forming toxin sticholysin II from the sea anemone Stichodactyla helianthus
Mancheño, J.M., Martínez-Ripoll, M., Gavilanes, J.G. and Hermoso, J.A.
Acta Crystallographica (2002) D58, 1229-1231

Activation of Horse PLRP2 by Bile Salts Does Not Require Colipase
Jayne, S., Kerfelec, B., Foglizzo, E., Granon, S., Hermoso, J.A., Chapus, C. and Crenon, I.
Biochemistry (2002) 41, 8422-8428

Structural basis for the kinetics of Candida rugosa Lip1 and Lip3 isoenzymes
Pernas, M., López, C., Prada, A., Hermoso, J. and Rúa, M.L.
Colloids and Surfaces B: Biointerfaces (2002) 26, 67-74

Probing the role of glutamic acid 139 of Anabaena ferredoxin-NADP+ reductase in the interaction with substrates
Faro, M., Frago, S., Mayoral, T., Hermoso, J.A., Sanz-Aparicio, J., Gómez-Moreno, C. and Medina, M.
European Journal of Biochemistry (2002) 269, 4938-4947

TrwD, the Hexameric Traffic ATPase Encoded by Plasmid R388, Induces Membrane Destabilization and Hemifusion of Lipid Vesicles
Machón, C., Rivas, S., Albert, A., Goñi, F.M. and de la Cruz, F.
Journal of Bacteriology (2002) 184, 1661-1668

Mechanism of Coenzyme Recognition and Binding Revealed by Crystal Structure Analysis of Ferredoxin-NADP+ Reductase Complexed with NADP+
Hermoso, J.A., Mayoral, T., Faro, M., Gómez-Moreno, C., Sanz-Aparicio, J. and Medina, M.
Journal of Molecular Biology (2002) 319, 1193-1142

Estructural Enzymology of Li+-sensitive/Mg2+-dependent Phosphatases
Patel, S., Martinez-Ripoll, M., Blundell, T.L. and Albert, A.
Journal of Molecular Biology (2002) 320, 1087-1094



2001

Probing the Determinants of Coenzyme Specificity in Ferredoxin-NADP+ Reductase by Site-directed Mutagenesis
Medina, M., Luquita, A., Tejero, J., Hermoso, J., Mayoral, T., Sanz-Aparicio, J., Grever, K. and Gómez-Moreno, C.
Journal of Biological Chemistry (2001) 276, 11902-11912

Role of a Cluster of Hydrophobic Residues Near the FAD Cofactor in Anabaena PCC 7119 Ferredoxin-NADP+ Reductase for Optimal Complex Formation and Electron Transfer to Ferredoxin
Martínez-Júlvez, M., Nogués, I., Faro, M., Hurley, J.K., Brodie, T.B., Mayoral, T., Sanz-Aparicio, J., Hermoso, J., Stankovich, M.T., Medina, M., Tollin, G. and Gómez-Moreno, C.
Journal of Biological Chemistry (2001) 276, 27498-27510

Regioselective resolution of 1,n-diols catalysed by lipases: a rational explanation of the eznymatic selectivity
Borreguero, I., Sánchez-Montero, J.M., Sinisterra, J.V., Rumbero, A., Hermoso, J. and Alcántara, A.R.
Journal of Molecular Catalysis B: Enzymatic (2001) 11, 1013-1024

Influence of the conformational flexibility on the kinetics and dimerisation process of two Candida rugosa lipase isoenzymes
Pernas, M.A., López, C., Rúa, M.L. and Hermoso, J.
FEBS Letters (2001), 501, 87-91
 


2000


The X-ray Structure of the FMN-binding Protein AtHal3 Provides the Structural Basis for the Activity of a Regulatory Subunit Involved in Signal Transduction
Albert, A., Martinez-Ripoll, M., Espinosa-Ruiz, A., Yenush, L., Culiañez-Macia, F.A. and Serrano, R.
Structure (2000) 8, 961-969

Critical Role of Micelles in Pancreatic Lipase Activation Revealed by Small Angle Neutron Scattering
Pignol, D., Ayvazian, L., Kerfelec, B., Timmins, P., Crenon, I., Hermoso, J., Fontecilla-Camps, J.C. and Chapus, C.
Journal of Biological Chemistry (2000) 275, 4220-4224

Direct Evolution of β-Glucosidase A from Paenibecillus polymyxa to Thermal Resistance
Gonzalez-Blasco, G., Sanz-Aparicio, J., Gonzalez, B., Hermoso, J.A. and Polaina, J.
Journal of Biological Chemistry (2000) 275, 13708-13712

X-ray structure of yeast Hal2p, a major target of lithium and sodium toxicity, and identification of framework interactions determining cation sensitivity
Albert, A., Yenush, L., Gil-Mascarell, M.R., Rodriguez, P.L., Patel, S., Martinez-Ripoll, M., Blundell, T.L. and Serrano, R.
Journal of Molecular Biology (2000) 295, 927-938

The Crystal Structure of Tetrameric Methionine Adenosyltransferase from Rat Liver Reveals the Methionine-binding site
González, B., Pajares, M.A., Hermoso, J.A., Alvarez, L., Garrido, F., Sufrin, J.R. and Sanz-Aparicio, J.
Journal of Molecular Biology (2000) 300, 363-375

Structural Basis of the Catalytic Role of Glu301 in Anabaena PCC 7119 Ferredoxin-NADP+ Reductase Revealed by X-Ray Crystallography
Mayoral, T., Medina, M., Sanz-Aparicio, J., Gomez-Moreno, C. and Hermoso, J.
Proteins: Structure, Function, and Genetics (2000) 38, 60-69

Biochemical and Physical Characterization of Parvovirus Minute Virus of Mice Virus-like Particles
Hernando, E., Llamas-Saiz, A.L., Foces-Foces, C., McKenna, R., Portman, I., Agbandje-McKenna, M. and Almendral, J.M.
Virology (2000) 267, 299-309



1999

Making the most of commercial sparse-matrix protein crystallization screening kits
Albert, A. and Martinez-Ripoll, M.
Journal of Applied Crystallography (1999) 32, 336-338

Molecular study of the rat liver NADH: Cytochrome c oxidoreductase complex during development and ageing
Torres-Mendoza, C., Albert, A. and Cruz Arriaga, M.
Molecular and Cellular Biochemistry (1999) 195, 133-142

A six-stranded double-psi beta barrel is shared by several protein superfamilies
Castillo, R.M., Mizuguchi, K., Dhanaraj, V., Albert, A., Blundell, T.L. and Murzin, A.G.
Structure (1999) 7, 227-236

Acyclic Phenylalkadienols as Substrates for the Study of Enzyme Recognition. Regioselective Acylation by Porcine Pancreatic Lipase: A Structural Hypothesis for the Enzymatic Activity
Borreguero, I., Sinisterra, J.V., Rumbero, A., Hermoso, J., Martinez-Ripoll, M. and Alcantara, A.R.
Tetrahedron (1999), 55, 14961-14974

Synthesis, structure and redox properties of ruthenium complexes containing the tpm facial and the trpy meridional tridentate ligands: Crystal structures of [RuCl3(trpy)] and [Ru(tpm)(py)3](PF6)2
Laurent, F., Plantalech, E., Donnadieu, B., Jiménez, A., Hernández, F., Martínez-Ripoll, M., Biner, M. and Llobet, A.
Polyhedron (1999) 18, 3321-3331




1998

Crystal structure of aspartate decarboxylase at 2.2 Å resolution provides evidence for an ester in protein self-processing
Albert, A., Dhanaraj, V., Genschel, U., Khan, G., Ramjee, M.K., Pulido, R., Sibanda, B.L., von Delft, F., Witty, M., Blundell, T.L., Smith, A.G. and Abell, C.
Nature Structural and Molecular Biology (1998) 5, 289-293  (doi:10.1038/nsb0498-289)

Pancreatic Lipase-Related Protein Type 1: A Double Mutation Restores a Significant Lipase Activity
Crenon, I., Jayne, S., Kerfelec, B., Hermoso, J., Pignol, D. and Chapus, C.
Biochemical and Biophysical Research Communications (1998) 246, 513-517

Role of Arg100 and Arg264 from Anabaena PCC 7119 Ferredoxin-NADP+ Reductase for Optimal NADP+ Binding and Electron Transfer
Martinez-Julvez, M., Hermoso, J., Hurley, J.K., Mayoral, T., Sanz-Aparicio, J., Tollin, G., Gomez-Moreno, C. and Medina, M.
Biochemistry (1998) 37, 17680-17691

The lipase/colipase complex is activated by a micelle: neutron crystallographic evidence
Pignol, D., Hermoso, J., Kerfelec, B., Crenon, I., Chapus, C. and Fontecilla-Camps, J.C.
Chemistry and Physics of Lipids (1998) 93, 123-129

Ion Pairing between Lipase and Colipase Plays a Critical Role in Catalysis

Ayvazian, L., Crenon, I., Hermoso, J., Pignol, D., Chapus, C. and Kerfelec, B.
Journal of Biological Chemistry (1998) 273, 33604-33609

Crystal Structure of β-Glucosidase A from Bacillus polymyxa: Insights into the Catalytic Activity in Family 1 Glycosyl Hydrolases

Sanz-Aparicio, J., Hermoso, J.A., Martinez-Ripoll, M., Lequerica, J.L. and Polaina, J.
Journal of Molecular Biology (1998) 275, 491-502

Pancreatic Lipase related proteins type I: Specialized lipase or an inactive enzyme?

Crenon, I., Flogizzo, E., Kerfelec, B., Virine, A., Pignol, D., Hermoso Dominguez, J., Bonicel, J. and Chapus, C.
Protein Engineering (1998) 112, 135-142

Structural Basis of Increased Resistance to Thermal Denaturation Induced by Single Amino Acid Substitution in the Sequence of β-Glucosidase A From Bacillus polymyxa
Sanz-Aparicio, J., Hermoso, J.A., Martinez-Ripoll, M., Gonzalez, B., Lopez-Camacho, C. and Polaina, J.
Proteins: Structure, Function, and Genetics (1998) 33, 567-576

Functional implications of the structure of the murine parvovirus, minute virus of mice
Agbandje-McKenna, M., Llamas-Saiz, A.L., Wang, F., Tattersall, P. and Rossmann, M.G.
Structure (1998) 6, 1369-1381

Amide complexes of zirconium, rhodium, and iridium: Synthesis and reactivity. X-ray crystal structures of (η5-C5H5)2Zr(NHC6H4-o-SMe)2 and [Rh(μ-SC6H4-o-NHMe)(COD)]2
Fandos, R., Martínez-Ripoll, M., Otero, A., Ruiz, M.J., Rodríguez, A. and Terreros, P.
Organometallics (1998) 17, 1465-1470

Enantiomerically Pure α-Alkylidene β-Amino Esters from Assymetric Addition of Metal Dienolates to N-Sulfinylimines
Garcia-Ruano, J.L., Fernandez, I., del Prado Catalina, M., Hermoso, J.A., Sanz-Aparicio, J. and Martinez-Ripoll, M.
Journal of Organic Chemistry (1998) 63, 7157-7161
 


1997


Structure Determination of Minute Virus of Mice
Llamas-Saiz, A.L., Agbandje-McKenna, M., Wikoff, W.R., Bratton, J., Tattersall, P. and Rossmann, G.
Acta Crystallographica (1997) D53, 93-102

Purification, Crystallization and Preliminary X-ray Diffraction Studies of C-Phycocyanin and Allophycocyanin from Spirulina platensis
Moreno, A., Bermejo, R., Talavera, E., Alvarez-Pez, J.M., Sanz-Aparicio, J. and Romero, A.
Acta Crystallographica (1997) D53, 321-326

Aspartic proteinases: From the first X-ray photos of pepsin crystals to hundreds of 3-D structures
Blundell, T.L., Guruprasad, K., Albert, A., Williams, M., Sibanda, B.L. and Dhanaraj, V.
Current Science (1997) 72, 483-489

Neutron Crystallographic Evidence of Lipase-Colipase Complex Activation by a Micelle
Hermoso, J., Pignol, D., Roth, M., Chapus, C. and Fontecilla-Camps, J.C.
EMBO Journal (1997) 16, 5531-5536

The Crystal Structure of Canavalia brasiliensis Lectin Suggest a Correlation Between its Quaternary Conformation and its Distinct Biological Properties from Concanavalin A
Sanz-Aparicio, J., Hermoso, J.A., Grangeiro, T.B., Calvete, J.J. and Cavada, B.S.
FEBS Letters (1997) 405, 114-118

Packing Modes in Nitrobenzene Derivatives. I. The Single Stacks
Andre, I., Foces-Foces, C., Cano, F.H. and Martinez-Ripoll, M.
Acta Crystallographica (1997) B53, 984-995

Packing Modes in Nitrobenzene Derivatives. II. The 'Pseudo-Herringbone' Mode
Andre, I., Foces-Foces, C., Cano, F.H. and Martinez-Ripoll, M.
Acta Crystallographica (1997) B53, 996-1005

A New Polymorph of Li4P2O7
Daidouh, A., Veiga, M.L., Pico, C. and Martinez-Ripoll, M.
Acta Crystallographica (1997) C53, 167-169

Strain Effects in Protonated Carbonyl Compounds. An Experimental and ab Initio Treatment of Acyclic Carboxamides and Ketones
Homan, H., Herreros, M., Notario, R., Abboud, J.L., Essefar, M., Mo, O., Yanez, M., Foces-Foces, C., Ramos-Gallardo, A., Martinez-Ripoll, M., Vegas, A., Molina, M.T., Casanovas, J., Jimenez, P., Roux, M.V. and Turrion, C.
Journal of Organic Chemistry (1997) 62, 8503-8512

Sulfur-Directed Asymmetric 1,3-Dipolar Cycloadditions of Azomethine Ylides with Enantiopure Sulfinimines
Viso, A., Fernandez, R., Guerrero-Strachan, C., Alonso, M., Martinez-Ripoll, M. and Andre, I.
Journal of Organic Chemistry (1997) 62, 2316-2317

Polymorphism in an oligo(aryl ether ketone)
Rueda, D.R., Zolotukhin, M.G., Andre, I., Martinez-Ripoll, M., Abajo, J. and Alvarez, J.C.
Macromolecular Chemistry and Physics (1997) 198, 2089–2099  (doi:10.1002/macp.1997.021980707) 

Organoammonium diphosphopentamolybdates (VI): influence of organic cations and anion protonation on crystal packing and geometrical features of polyanion
Aranzabe, A., Wery, A., Martin, S., Gutierrez-Zorrilla, J.M., Luque, A., Martinez-Ripoll, M. and Roman, P.
Inorganica Chimica Acta (1997) 255, 35-45

Rhodium(I) fluorothiolate complexes as hydroformylation catalyst precursors. Crystal structure of two polymorphs of trans-[Rh(SC6F5)(CO)(PPh3)2]
Garcia-Fierro, J.L., Martinez-Ripoll, M., Merchan, M.D., Rodriguez, A., Terreros, P., Torrens, P. and Vivar-Cerrato, M.A.
Journal of Organometallic Chemistry (1997) 544, 243-255

Configurational and Conformational Study of New Esters Derived from 2-Methyl-2- azabicyclo[2.2.2] octan-5-syn(anti)-ols by NMR spectroscopy and X-ray Crystallography
Fernandez, M.J., Huertas, R., Toledano, M.S., Galvez, E., Server-Carrio, J. and Martinez-Ripoll, M.
Magnetic Resonance in Chemistry (1997) 35, 821-828

10H+-2,3-Benzo-1,4-dioxa-7,10,13-triazacyclopentadec-2-ene-6,14-dione Picrate Hydrate (1/1/1)
G. Hundal, S. Kumar, M.S. Hundal, H. Singh, J. Sanz-Aparicio and M. Martinez-Ripoll
Acta Crystallographica (1997) C53, 799-801  (doi:10.1107/S0108270196015041)



1996

Lipase Activation by Nonionic Detergents. The Crystal Structure of the Porcine Lipase-Colipase-Tetraethylene Glycol Monooctyl Ether Complex
Hermoso, J.A., Pignol, D., Kerfelec, B., Crenon, I., Chapus, C. and Fontecilla-Camps, J.C.
Journal of Biological Chemistry (1996) 271, 18007-18016

Protein engineering loops in aspartic proteinases: site-directed mutagenesis, biochemical characterization and X-ray analysis of chymosin with a replaced loop from rhizopuspepsin
Nugent, P.G., Albert, A., Orprayoon, P., Pitts, J.E., Blundell, T.L. and Dhanaraj, V.
Protein Engineering (1996) 9, 885-893

Structural Analysis of a Mutation in Canine Parvovirus Which Controls Antigenicity and Host Range
Llamas-Saiz, A.L., Agbandje-Mckenna, M., Parker, J.S.L., Wahid, A.T.M., Parrish, C.R. and Rossmann, M.G.
Virology (1996) 225, 65-71

An 18-chloro-4α-hydroxy derivative of 19-acetylteupolin IV: A neo-clerodane diterpenoid of biological interest
Hundal, G. and Martinez-Ripoll, M.
Acta Crystallographica (1996) C52, 3157-3159

Structure-Based Rationalization of the Ionophore Character of Lead-Selective Amide-Ether-Amine-Containing Macrocycles: 2,3-Benzo-1,4-dioxa-7,11,15-triazacyclo heptadec-2-ene-6,16-dione and 2,3-Benzo-1,4-dioxa-7,10,13 triazacyclopentadec-2-ene 6,14-dione
Hundal, G., Martínez-Ripoll, M., Sanz-Aparicio, J., Hundal, M.S., Singh, H., Kumar, S. and Singh, R.
Acta Crystallographica (1996) C52, 1232-1236

Bis(triethanolamine)calcium 3,5-Dinitro-benzoate
Hundal, G., Martínez-Ripoll, M., Hundal, M.S. and Poonia, N.S.
Acta Crystallographica (1996) C52, 789-792

Dimeric Aqua(3,5-dinitrobenzoato)(triethyl-eneglycol)calcium(II) 3,5 Dinitrobenzoate Hydrate
Hundal, G., Martínez-Ripoll, M., Hundal, M.S. and Poonia, N.S.
Acta Crystallographica (1996) C52, 786-789

Apiananes: C23 Terpenoids with a New Type of Skeleton from Salvia apiana
Luis, J.G., Lahlou, E.H., Andres, L.S., Hundal, G. and Martínez-Ripoll, M.
Tetrahedron Letters (1996) 37, 4213-4216

New Models for the Study of the Racemization Mechanism of Carbodiimides. Synthesis and Structure (X-ray Crystallography and 1H NMR) of  Cyclic Carbodiimides
Molina, P., Alajarin, M., Sanchez-Andrada, P., Server-Carrió, J., Martínez-Ripoll, M., Anderson, J.E., Jimeno, M.L. and Elguero, J.
Journal of Organic Chemistry (1996) 61, 4289-4299

ansa-Niobocene Complexes: Synthesis and Characterization of Novel Complexes [Me2Si(η5-C5H4)2] NbCl2 and [Me2Si(η5-C5H4)2]NbCl(RC-CR) (R=Me,Ph). Xray Crystal Structure of [Me2Si(η5-C5H4)2] NbCl(MeC-CMe)
Antiñolo, A., Martínez-Ripoll, M., Mugnier, Y., Otero, A., Prashar, S. and Rodriguez, A.M.
Organometallics (1996) 15, 3241-3243  (doi:10.1021/om960275g)

Synthetic Ionophores. 13. Pyridine-Diamide-Diester Receptors: Remarkable Effect of Amide Substi-tuents on Molecular Organization and Ag+ Selectivity
Kumar, S., Hundal, M., Kaur, N., Singh, R., Singh, H., Hundal, G., Martínez-Ripoll, M. and Sanz-Aparicio, J.
Journal of Organic Chemistry (1996) 61, 7819-7825  (doi:10.1021/jo960859s)

Steroselective Nucleophilic Epoxidation of Hydroxy Vinyl Sulfoxide Derivatives
Fernández de la Pradilla, R., Manzano, P., Priego, J., Viso, A., Martínez-Ripoll, M. and Rodríguez, A.
Tetrahedron Letters (1996) 37, 6793-6796  (doi:10.1016/S0040-4039(96)01481-5)

Diastereoselective Formation of an [μ4-(1Z)-Sulfinyl diene]iron(0) Tricarbonyl Complex. Diastereo-selective Allylation of the Derived Iron Dienal
Paley, R.S., Rubio, M.B., Fernández de la Pradilla, R., Dorado, R., Hundal, G. and Martínez-Ripoll, M.
Organometallics (1996) 15, 4672-4674  (doi:10.1021/om960654+)

Synthesis and structural study of [{Pd(C6H4CH2N(CH3)2)}2(μ-Br)(μ-X)] complexes (X = hydroxide, amide or thiolate)
Ruiz, J., Cutillas, N., Sampedro, J., López, G., Hermoso, J.A. and Martínez-Ripoll, M.
Journal of Organometallic Chemistry (1996) 526, 67-72  (doi:10.1016/S0022-328X(96)06520-5)

An 18-chloro-4α-hydroxy derivative of 19-acetylteupolin IV: A neo-clerodane diterpenoid of biological interest
Hundal, G. and Martinez-Ripoll, M.
Acta Crystallographica (1996) C52, 3157-3159  (doi:10.1107/S0108270196009110)

Influence of protonation on crystal packing and thermal behaviour of tert-butylammonium decavanadates
Wery, A.S.J., Gutierrez-Zorrilla, J.M., Luque, A., Roman, P. and Martinez-Ripoll, M.
Polyhedron (1996) 15, 4555-4564  (doi:10.1016/0277-5387(96)00186-6)




1993-1995

Cristalografía

Cano, F.H., Foces-Foces, C. and Martínez-Ripoll, M. (eds.)
Serie: Nuevas Tendencias (1995). CSIC  (link to the book)

Macromoléculas biológicas: Estructura tridimensional

Martínez-Ripoll, M., Romero, A. and Sanz-Aparicio, J.
Investigación y Ciencia (1995) 222, 83-84  (link to the journal)

Crystallizacion and Preliminary X-ray Diffraction Analysis of a Type I β-Glucosidase Encoded by the bglA Gene of Bacillus polymyxa
Sanz-Aparicio, J., Romero, A., Martínez-Ripoll, M., Madarro, A., Flors, A. and Polaina, J.
Journal of Molecular Biology (1994) 240, 267-270  (doi:10.1006/jmbi.1994.1441)

The Use of Protein Homologues in the Rotation Function
Aguilar, C.F., Newman, M.P., Sanz-Aparicio, J., Cooper, J.B., Tickle, I.J. and Blundell, T.L.
Acta Crystallographica (1993) A49, 306-315   (doi:10.1107/S010876739200847X)


Facilities

The department is very well equipped with a wide range of crystallographic and computing equipment, wet laboratories and dedicated facilities for protein production, protein characterisation, protein crystallization, X-ray diffraction and computing. A summary of all these facilities can be obtained through this link.

Moreover (although only written in Spanish) some protocols for the labs of protein production and molecular biology can be obtained through this link.
 
Protein production and Molecular Biology Laboratories
Laboratory for protein production
Laboratory for protein production
Biomol lab
Molecular Biology Lab
 
Crystallization Laboratory
Crystallization lab
Crystallization Lab

Crystallization platform
Crystallization platform

Crystallization robot
Crystallization robot

Crystal-farm
Crystal-Farm
 
X-ray Diffraction Laboratory
Kappa goniometer with CCD and rotating anode
Kappa goniometer with CCD and rotating anode with mirrors
 
Imaging plate mounted on a rotating anode with mirrors
Imaging plate mounted on a rotating anode with mirrors
Kappa goniometer and Photon detector
Kappa goniometer with Photon detector and X-ray micro-source


 
Computing Laboratory
Graphic computers
Graphic computers with stereoview
Graphic computers
Graphic computers with stereoview

In addition, there are several low and high pressure chromatography systems and a large number of different chromatographic matrices for optimal protein purification. Analytical techniques, including electrophoresis are also available in the lab, which combined with access to mass spectrometry and analytical ultracentrifugation are used to assess the quality of the proteins produced. In addition, through our links with remaining groups of the Institute, we have access to isothermal titration calorimetry, Nuclear Magnetic Resonance, analytical ultracentrifugation and MALDI-TOF mass spectrometry.

Biochemical studies and assays can be performed using a number of techniques, such as UV-VIS and CD-spectroscopies, microcalorimetry and fluorimetry.

The ultimate goal is to provide a regular supply of crystals for X-ray crystallographic structure determination. Success in this aim is aided by the presence of a number of temperature-controlled incubators, high-throughput facilities and dedicated crystallisation rooms.